Gaining or losing perspective

被引:0
作者
Jon Lee
Daphne Skipper
Emily Speakman
机构
[1] University of Michigan,IOE Dept.
[2] U.S. Naval Academy,Department of Mathematics
[3] University of Colorado Denver,Department of Mathematical and Statistical Sciences
来源
Journal of Global Optimization | 2022年 / 82卷
关键词
Mixed-integer nonlinear optimization; Volume; Integer; Relaxation; Polytope; Perspective; Higher-dimensional power cone; Exponential cone;
D O I
暂无
中图分类号
学科分类号
摘要
We study MINLO (mixed-integer nonlinear optimization) formulations of the disjunction x∈{0}∪[l,u]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \{0\}\cup [l,u]$$\end{document}, where z is a binary indicator of x∈[l,u]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in [l,u]$$\end{document} (u>ℓ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u> \ell > 0$$\end{document}), and y “captures” f(x), which is assumed to be convex on its domain [l, u], but otherwise y=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y=0$$\end{document} when x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=0$$\end{document}. This model is useful when activities have operating ranges, we pay a fixed cost for carrying out each activity, and costs on the levels of activities are convex. Using volume as a measure to compare convex bodies, we investigate a variety of continuous relaxations of this model, one of which is the convex-hull, achieved via the “perspective reformulation” inequality y≥zf(x/z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y \ge zf(x/z)$$\end{document}. We compare this to various weaker relaxations, studying when they may be considered as viable alternatives. In the important special case when f(x):=xp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x) := x^p$$\end{document}, for p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, relaxations utilizing the inequality yzq≥xp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$yz^q \ge x^p$$\end{document}, for q∈[0,p-1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \in [0,p-1]$$\end{document}, are higher-dimensional power-cone representable, and hence tractable in theory. One well-known concrete application (with f(x):=x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x) := x^2$$\end{document}) is mean-variance optimization (in the style of Markowitz), and we carry out some experiments to illustrate our theory on this application.
引用
收藏
页码:835 / 862
页数:27
相关论文
共 50 条
  • [41] A Perspective on MR Fingerprinting
    Asslander, Jakob
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 53 (03) : 676 - 685
  • [42] A perspective on interdisciplinary science
    Naiman, RJ
    ECOSYSTEMS, 1999, 2 (04) : 292 - 295
  • [43] Logophoricity, Perspective, and Reflexives
    Charnavel, Isabelle
    ANNUAL REVIEW OF LINGUISTICS, VOL 7, 2021, 7 : 131 - 155
  • [44] Keeping things in perspective
    Elgin, Catherine Z.
    PHILOSOPHICAL STUDIES, 2010, 150 (03) : 439 - 447
  • [45] Keeping things in perspective
    Catherine Z. Elgin
    Philosophical Studies, 2010, 150 : 439 - 447
  • [46] Perspective: of Time and Eternity
    Lawson, James G.
    JOURNAL OF HUMANISTIC MATHEMATICS, 2015, 5 (01): : 55 - 81
  • [47] Perspective, Metaphor and Hermeneutics
    Serrano Ribeiro, Jose L.
    PENSAMIENTO, 2016, 72 (270): : 179 - 196
  • [48] An (Isometric) Perspective on Homographies
    Crannell, Annalisa
    Frantz, Marc
    Futamura, Fumiko
    JOURNAL FOR GEOMETRY AND GRAPHICS, 2019, 23 (01): : 65 - 83
  • [49] Emotion and perspective in sport
    Botterill, C
    Brown, M
    INTERNATIONAL JOURNAL OF SPORT PSYCHOLOGY, 2002, 33 (01) : 38 - 60
  • [50] The Perspective of Daniele Barbaro
    Cosimo Monteleone
    Nexus Network Journal, 2020, 22 : 61 - 90