Convergence of the Simulated Annealing Algorithm for Continuous Global Optimization

被引:0
作者
R. L. Yang
机构
[1] Northern Jiaotong University,Institute of Automation
来源
Journal of Optimization Theory and Applications | 2000年 / 104卷
关键词
simulated annealing; cooling schedule; global optimization; convergence analysis;
D O I
暂无
中图分类号
学科分类号
摘要
A class of simulated annealing algorithms for continuous global optimization is considered in this paper. The global convergence property is analyzed with respect to the objective value sequence and the minimum objective value sequence induced by simulated annealing algorithms. The convergence analysis provides the appropriate conditions on both the generation probability density function and the temperature updating function. Different forms of temperature updating functions are obtained with respect to different kinds of generation probability density functions, leading to different types of simulated annealing algorithms which all guarantee the convergence to the global optimum.
引用
收藏
页码:691 / 716
页数:25
相关论文
共 28 条
[1]  
Kirkpatrick S.(1983)Optimization by Simulated Annealing Science 220 671-680
[2]  
Gelatt C. D.(1985)Thermodynamical Approach to the Travelling Salesman Problem: An Efficient Simulation Algorithm Journal of Optimization Theory and Applications 45 41-45
[3]  
Vecchi M. P.(1991)A Theoretical Framework for Simulated Annealing Algorithmica 6 302-345
[4]  
Cerny V.(1988)Diffusions for Global Optimization Cooling Schedules for Optimal Annealing 13 311-329
[5]  
Romeo F.(1986)Simulated Annealing in Compound Gaussian Random Fields SIAM Journal on Control and Optimization 24 1031-1043
[6]  
Sangiovanni-vincentelli A.(1987)- SIAM Journal on Control and Optimization 25 737-753
[7]  
Hajek B.(1991)Fast Simulated Annealing SIAM Journal on Control and Optimization 29 999-1018
[8]  
Geman S.(1990)Very Fast Simulated Reannealing IEEE Transactions on Information Theory 36 94-107
[9]  
Hwang C. R.(1993): SIAM Journal on Control and Optimization 31 111-131
[10]  
Chiang T. S.(1986)Global Optimization and Simulated Annealing Nonconvex Optimization 698 59-65