Two pairs of heteroclinic orbits coined in a new sub-quadratic Lorenz-like system

被引:0
作者
Haijun Wang
Guiyao Ke
Jun Pan
Feiyu Hu
Hongdan Fan
Qifang Su
机构
[1] Taizhou University,School of Electronic and Information Engineering (School of Big Data Science)
[2] Zhejiang Guangsha Vocational and Technical University of Construction,School of Information
[3] GongQing Institute of Science and Technology,School of Information Engineering
[4] Zhejiang University of Science and Technology,Department of Big Data Science, School of Science
[5] College of Sustainability and Tourism Ritsumeikan Asia Pacific University,undefined
[6] Jumonjibaru,undefined
来源
The European Physical Journal B | 2023年 / 96卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 47 条
  • [1] Lorenz EN(1963)Deterministic nonperiodic flow J. Atmos. Sci. 20 130-141
  • [2] Leonov GA(2015)Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Eur. Phys. J. Spec. Top. 224 1421-1458
  • [3] Kuznetsov NV(2018)Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system Nonlinear Dyn. 92 267-285
  • [4] Mokaev TN(2020)The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension Nonlinear Dyn. 102 713-732
  • [5] Kuznetsov NV(2020)Bifurcations, ultimate boundedness and singular orbits in a unified hyperchaotic Lorenz-type system Discret. Contin. Dyn. Syst. Ser. B 25 1791-1820
  • [6] Leonov GA(2022)Multitudinous potential hidden Lorenz-like attractors coined Eur. Phys. J. Spec. Top. 231 359-368
  • [7] Mokaev TN(2011)A proposed standard for the publication of new chaotic systems Int. J. Bifurc. Chaos 21 2391-2394
  • [8] Prasad A(2006)On homoclinic and heteroclinic orbits of the Chen’s system Int. J. Bifurc. Chaos 16 3035-3041
  • [9] Shrimali MD(2010)Dynamics of a new Lorenz-like chaotic system Nonl. Anal.: RWA 11 2563-2572
  • [10] Kuznetsov NV(2012)Dynamics of the general Lorenz family Nonlinear Dyn. 67 1595-1611