On vanishing coefficients of algebraic power series over fields of positive characteristic

被引:0
作者
Boris Adamczewski
Jason P. Bell
机构
[1] CNRS,Institut Camille Jordan
[2] Université de Lyon,Department of Mathematics
[3] Université Lyon 1,undefined
[4] Simon Fraser University,undefined
来源
Inventiones mathematicae | 2012年 / 187卷
关键词
Abelian Group; Power Series; Positive Characteristic; Arithmetic Progression; Linear Recurrence;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be a field of characteristic p>0 and let f(t1,…,td) be a power series in d variables with coefficients in K that is algebraic over the field of multivariate rational functions K(t1,…,td). We prove a generalization of both Derksen’s recent analogue of the Skolem–Mahler–Lech theorem in positive characteristic and a classical theorem of Christol, by showing that the set of indices (n1,…,nd)∈ℕd for which the coefficient of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t_{1}^{n_{1}}\cdots t_{d}^{n_{d}}$\end{document} in f(t1,…,td) is zero is a p-automatic set. Applying this result to multivariate rational functions leads to interesting effective results concerning some Diophantine equations related to S-unit equations and more generally to the Mordell–Lang Theorem over fields of positive characteristic.
引用
收藏
页码:343 / 393
页数:50
相关论文
共 49 条
[1]  
Allouche J.-P.(1997)Automatic maps in exotic numeration systems Theory Comput. Syst. 30 285-331
[2]  
Cateland E.(1989)Une généralisation du théorème de Skolem–Mahler–Lech Q. J. Math. Oxf. 40 133-138
[3]  
Gilbert W.J.(1987)Suites récurrentes linéaires : propriétés algébriques et arithmétiques Enseign. Math. 33 67-108
[4]  
Peitgen H.-O.(1979)Ensembles presque périodiques Theor. Comput. Sci. 9 141-145
[5]  
Shallit J.O.(1980)-reconnaissables Bull. Soc. Math. Fr. 108 401-419
[6]  
Skordev G.(1969)Suites algébriques, automates et substitutions Math. Syst. Theory 3 186-192
[7]  
Bézivin J.-P.(1983)On the base-dependence of sets of numbers recognizable by finite automata Invent. Math. 76 129-143
[8]  
Cerlienco L.(1987)Intégration sur un cycle évanescent J. Number Theory 26 46-67
[9]  
Mignotte M.(2007)Algebraic power series and diagonals Invent. Math. 168 175-224
[10]  
Piras F.(1984)A Skolem-Mahler-Lech theorem in positive characteristic and finite automata Compos. Math. 53 225-244