Integral and Weighted Composition Operators on Fock-type Spaces

被引:0
作者
Tesfa Mengestie
Mollalgn Haile Takele
机构
[1] Western Norway University of Applied Sciences,Mathematics Section
[2] Bahir Dar University,Department of Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
Fock-type spaces; Schatten class; Invertible; Unitary; Volterra-type integral; Weighted composition operators; Supercyclic; Primary: 47B37; 30H20; Secondary: 46E15; 46E20;
D O I
暂无
中图分类号
学科分类号
摘要
We study various structures of general Volterra-type integral and weighted composition operators acting between two Fock-type spaces Fφp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}_{\varphi }^p$$\end{document} and Fφq,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}_{\varphi }^q,$$\end{document} where φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} is a radial function growing faster than the function z→|z|2/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\rightarrow |z|^2/2$$\end{document}. The main results show that the unboundedness of the Laplacian of φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} provides interesting results on the topological and spectral structures of the operators in contrast to their actions on Fock spaces, where the Laplacian of the weight function is bounded. We further describe the invertible and unitary weighted composition operators. Finally, we show the spaces support no supercyclic weighted composition operator with respect to the pointwise convergence topology and hence with the weak and strong topologies.
引用
收藏
相关论文
共 17 条
[1]  
Constantin O(2015)Integral operators, embedding theorems and a Littlewood–Paley formula on weighted Fock spaces J. Geom. Anal. 26 1109-1154
[2]  
Peláez J(2014)Normal and isometric weighted composition operators on the Fock space Bull. Lond. Math. Soc. 46 847-856
[3]  
Le T(2008)Products of Volterra type operator and composition operator from J. Math. Anal. Appl. 345 40-52
[4]  
Li S(2021) and Bloch spaces to the Zygmund space Mediterr. J. Math. 18 172-350
[5]  
Stević S(2021)Convex-cyclic weighted composition operators and their adjoints Quaestiones Mathematicae 44 335-958
[6]  
Mengestie T(2020)Spectral properties of composition operators on Fock-type spaces Complex Anal. Oper. Theory 14 2-1256
[7]  
Mengestie T(2019)Topological and dynamical properties of composition operators Complex Anal. Oper. Theory. 13 935-755
[8]  
Seyoum W(2014)Integral, differential and multiplication operators on weighted Fock spaces Complex Anal. Oper. Theory 8 1225-243
[9]  
Mengestie T(2014)Carleson type measures for Fock–Sobolev spaces J. Geom. Anal. 24 740-undefined
[10]  
Seyoum W(2018)Product of Volterra type integral and composition operators on weighted Fock spaces Mediterr. J. Math. 15 42-undefined