Quantifying jet transport properties via large pT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_T$$\end{document} hadron production

被引:0
作者
Zhi-Quan Liu
Hanzhong Zhang
Ben-Wei Zhang
Enke Wang
机构
[1] Central China Normal University,Key Laboratory of Quark and Lepton Physics (MOE), Institute of Particle Physics
来源
The European Physical Journal C | 2016年 / 76卷 / 1期
关键词
Large Hadron Collider; Transverse Momentum; Fragmentation Function; Central Collision; Gluon Emission;
D O I
10.1140/epjc/s10052-016-3885-3
中图分类号
学科分类号
摘要
Nuclear modification factor RAA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{AA}$$\end{document} for large pT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_T$$\end{document} single hadron is studied in a next-to-leading order perturbative QCD parton model with medium-modified fragmentation functions (mFFs) due to jet quenching in high-energy heavy-ion collisions. The energy loss of the hard partons in the quark–gluon plasma is incorporated in the mFFs which utilize two most important parameters to characterize the transport properties of the hard parton jets: the jet transport parameter q^0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}_{0}$$\end{document} and the mean free path λ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{0}$$\end{document}, both at the initial time τ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _0$$\end{document}. A phenomenological study of the experimental data for RAA(pT)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{AA}(p_{T})$$\end{document} is performed to constrain the two parameters with simultaneous χ2/d.o.f.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^2/\mathrm{d.o.f.}$$\end{document} fits to Relativistic Heavy Ion Collider as well as Large Hadron Collider data. We obtain for energetic quarks q^0≈1.1±0.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}_{0}\approx 1.1 \pm 0.2$$\end{document} GeV2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document}/fm and λ0≈0.4±0.03\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{0}\approx 0.4 \pm 0.03$$\end{document} fm in central Au+Au\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Au}+\mathrm{Au}$$\end{document} collisions at sNN=200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s_{NN}}=200$$\end{document} GeV, while q^0≈1.7±0.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}_{0}\approx 1.7 \pm 0.3$$\end{document} GeV2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document}/fm, and λ0≈0.5±0.05\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{0}\approx 0.5 \pm 0.05$$\end{document} fm in central Pb+Pb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Pb}+\mathrm{Pb}$$\end{document} collisions at sNN=2.76\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s_{NN}}=2.76$$\end{document} TeV. Numerical analysis shows that the best fit favors a multiple scattering picture for the energetic jets propagating through the bulk medium, with a moderate averaged number of gluon emissions. Based on the best constraints for λ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{0}$$\end{document} and τ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _0$$\end{document}, the estimated value for the mean-squared transverse momentum broadening is moderate which implies that the hard jets go through the medium with small reflection.
引用
收藏
相关论文
共 149 条
  • [1] Wang XN(1992)undefined Phys. Rev. Lett. 68 1480-undefined
  • [2] Gyulassy M(1994)undefined Nucl. Phys. B 420 583-undefined
  • [3] Gyulassy M(2002)undefined Phys. Rev. Lett. 89 252301-undefined
  • [4] Wang XN(2004)undefined Phys. Lett. B 595 165-undefined
  • [5] Vitev I(2005)undefined Nucl. Phys. A 747 511-undefined
  • [6] Gyulassy M(2007)undefined Phys. Rev. C 75 054910-undefined
  • [7] Wang XN(2007)undefined Phys. Rev. Lett. 98 212301-undefined
  • [8] Eskola KJ(2008)undefined Phys. Rev. Lett. 100 072301-undefined
  • [9] Honkanen H(2009)undefined Phys. Rev. Lett. 103 032302-undefined
  • [10] Salgado CA(2011)undefined Phys. Rev. C 84 034902-undefined