Boundary Value Problems for Highly Nonlinear Inclusions Governed by Non-surjective Φ-Laplacians

被引:0
作者
Laura Ferracuti
Cristina Marcelli
Francesca Papalini
机构
[1] Polytechnic University of Marche,Department of Mathematical Sciences
来源
Set-Valued and Variational Analysis | 2011年 / 19卷
关键词
Differential inclusions; Φ-Laplacian; Nonlinear boundary conditions; Lower and upper solutions; Fixed point techniques; Nonlinear differential operators; Primary 34A60; Secondary 34L30; 34B15;
D O I
暂无
中图分类号
学科分类号
摘要
Combining fixed point theorems with the method of lower and upper solutions, we get the existence of solutions to the following nonlinear differential inclusion: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (D(x(t))\Phi(x'(t)))' \in G(t,x(t),x'(t)) \ \ \mbox{a.e. } t\in I=[0,T], $$\end{document}satisfying various nonlinear boundary conditions, covering Dirichlet, Neumann and periodic problems. Here Φ is a non-surjective homeomorphism and D is a generic positive continuous function.
引用
收藏
页码:1 / 21
页数:20
相关论文
共 56 条
  • [1] Amster P(2003)The prescribed mean curvature equation for nonparametric surfaces Nonlinear Anal. 52 1068-1077
  • [2] Mariani MC(2004)Nonlinear Neumann boundary-value problems with Φ-Laplacian operators An. Stiint. Univ. Ovidius Constanta 12 73-92
  • [3] Bereanu C(2006)Boundary-value problems with non-surjective Φ-Laplacian and one-side bounded nonlinearity Adv. Differ. Equ. 11 35-60
  • [4] Mawhin J(2007)Existence and multiplicity results for some nonlinear problems with singular Φ-Laplacian J. Differ. Equ. 243 536-557
  • [5] Bereanu C(2008)Periodic solutions of nonlinear perturbations of Φ-Laplacians with possibly bounded Φ Nonl. Anal. TMA 68 1668-1681
  • [6] Mawhin J(1991)Steady-state turbolent flow with reaction Rocky Mt. J. Math. 21 993-1007
  • [7] Bereanu C(1997)Existence results for the problem ( Nonl. Anal. TMA 30 1733-1742
  • [8] Mawhin J(1999)( Nonl. Anal. TMA 35 221-231
  • [9] Bereanu C(1996))) J. Differ. Equ. 124 343-358
  • [10] Mawhin J(1991) =  SIAM J. Math. Anal. 22 982-990