Scalarization of Tangential Regularity of Set-Valued Mappings

被引:0
作者
M. Bounkhel
L. Thibault
机构
[1] Case Université Montpellier II,Laboratoire d';Analyse Convexe
来源
Set-Valued Analysis | 1999年 / 7卷
关键词
set-valued mapping; tangent cone; normal cone; tangential regularity; directional regularity;
D O I
暂无
中图分类号
学科分类号
摘要
A set-valued mapping M from a topological vector space E into a normed vector space F is tangentially regular at a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {\bar x,\bar y} \right) $$ \end{document} in its graph g p h M if the Clarke tangent cone to g p h M at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {\bar x,\bar y} \right) $$ \end{document} is equal to the Bouligand contingent cone to g p h M at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {\bar x,\bar y} \right) $$ \end{document}. In this paper we characterize, in several cases, this tangential regularity as the directional regularity of the scalar function ΔM defined by ΔM(x, y) : = d(y, M(x)). The results allow us to express, in a useful formula, the subdifferential of ΔM in terms of the normal cone to the graph of M.
引用
收藏
页码:33 / 53
页数:20
相关论文
共 50 条
  • [31] On generalized ε-subdifferential and radial epiderivative of set-valued mappings
    Guo, X. L.
    Zhao, C. J.
    Li, Z. W.
    OPTIMIZATION LETTERS, 2014, 8 (05) : 1707 - 1720
  • [32] Transitivity, mixing and chaos for a class of set-valued mappings
    LIAO Gongfu
    Institute of Nonlinear Information Technology
    Department of Mathematics
    Science in China(Series A:Mathematics), 2006, (01) : 1 - 8
  • [33] GENERALIZED MINIMAX THEOREMS FOR TWO SET-VALUED MAPPINGS
    Zhang, Qingbang
    Cheng, Caozong
    Li, Xuanxuan
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2013, 9 (01) : 1 - 12
  • [34] Fixed point of set-valued graph contractive mappings
    Beg, Ismat
    Butt, Asma Rashid
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [35] Generic existence of fixed points for set-valued mappings
    Reich, S
    Zaslavski, AJ
    SET-VALUED ANALYSIS, 2002, 10 (04): : 287 - 296
  • [36] A porosity theorem for a class of nonexpansive set-valued mappings
    Reich, Simeon
    Zaslavski, Alexander J.
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VII, 2017, 699 : 275 - 282
  • [37] Common fixed points of compatible set-valued mappings
    Rhoades, BE
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1996, 48 (3-4): : 237 - 240
  • [38] Convergence Results for Contractive Type Set-Valued Mappings
    Zaslavski, Alexander J.
    AXIOMS, 2024, 13 (02)
  • [40] Weak subdifferential for set-valued mappings and its applications
    Li, S. J.
    Guo, X. L.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) : 5781 - 5789