A set-valued mapping M from a topological vector space E into a normed vector space F is tangentially regular at a point \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\left( {\bar x,\bar y} \right) $$
\end{document} in its graph g p h M if the Clarke tangent cone to g p h M at \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\left( {\bar x,\bar y} \right) $$
\end{document} is equal to the Bouligand contingent cone to g p h M at \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\left( {\bar x,\bar y} \right) $$
\end{document}. In this paper we characterize, in several cases, this tangential regularity as the directional regularity of the scalar function ΔM defined by ΔM(x, y) : = d(y, M(x)). The results allow us to express, in a useful formula, the subdifferential of ΔM in terms of the normal cone to the graph of M.