Scalarization of Tangential Regularity of Set-Valued Mappings

被引:0
|
作者
M. Bounkhel
L. Thibault
机构
[1] Case Université Montpellier II,Laboratoire d';Analyse Convexe
来源
Set-Valued Analysis | 1999年 / 7卷
关键词
set-valued mapping; tangent cone; normal cone; tangential regularity; directional regularity;
D O I
暂无
中图分类号
学科分类号
摘要
A set-valued mapping M from a topological vector space E into a normed vector space F is tangentially regular at a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {\bar x,\bar y} \right) $$ \end{document} in its graph g p h M if the Clarke tangent cone to g p h M at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {\bar x,\bar y} \right) $$ \end{document} is equal to the Bouligand contingent cone to g p h M at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {\bar x,\bar y} \right) $$ \end{document}. In this paper we characterize, in several cases, this tangential regularity as the directional regularity of the scalar function ΔM defined by ΔM(x, y) : = d(y, M(x)). The results allow us to express, in a useful formula, the subdifferential of ΔM in terms of the normal cone to the graph of M.
引用
收藏
页码:33 / 53
页数:20
相关论文
共 50 条
  • [1] Scalarization of tangential regularity of set-valued mappings
    Bounkhel, M
    Thibault, L
    SET-VALUED ANALYSIS, 1999, 7 (01): : 33 - 53
  • [2] Tangential regularity of Lipschitz epigraphic set-valued mappings
    Bounkhel, M
    Thibault, L
    OPTIMIZATION, 2000, 48 : 69 - 82
  • [3] On set-valued mappings with starlike graphs
    R. A. Khachatryan
    Journal of Contemporary Mathematical Analysis, 2012, 47 : 28 - 44
  • [4] On Set-Valued Mappings with Starlike Graphs
    Khachatryan, R. A.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2012, 47 (01): : 28 - 44
  • [5] Decompositions of set-valued mappings
    Protasov, I
    ALGEBRA AND DISCRETE MATHEMATICS, 2020, 30 (02): : 235 - 238
  • [6] Fuzzy integrals for set-valued mappings
    Cho, SJ
    Lee, BS
    Lee, GM
    Kim, DS
    FUZZY SETS AND SYSTEMS, 2001, 117 (03) : 333 - 337
  • [7] On the ∈-variational principle for set-valued mappings
    Li, S. J.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (10) : 1627 - 1632
  • [8] Minimax inequalities for set-valued mappings
    Zhang, Y.
    Li, S. J.
    Li, M. H.
    POSITIVITY, 2012, 16 (04) : 751 - 770
  • [9] MINIMAX PROBLEMS FOR SET-VALUED MAPPINGS
    Zhang, Y.
    Li, S. J.
    Zhu, S. K.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2012, 33 (02) : 239 - 253
  • [10] Weak Subdifferentials for Set-Valued Mappings
    X. J. Long
    J. W. Peng
    X. B. Li
    Journal of Optimization Theory and Applications, 2014, 162 : 1 - 12