Extracting laboratory test information from paper-based reports

被引:0
作者
Ming-Wei Ma
Xian-Shu Gao
Ze-Yu Zhang
Shi-Yu Shang
Ling Jin
Pei-Lin Liu
Feng Lv
Wei Ni
Yu-Chen Han
Hui Zong
机构
[1] Peking University First Hospital,Department of Radiation Oncology
[2] Philips Research China,undefined
来源
BMC Medical Informatics and Decision Making | / 23卷
关键词
Laboratory test; Paper based medical reports; Optical character recognition; Information extraction; Conditional random fields;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 97 条
[1]  
Adler-Milstein J(2015)Electronic health record adoption in US hospitals: Progress continues, but challenges persist Health Aff (Millwood) 34 2174-2180
[2]  
DesRoches CM(2021)Adoption of electronic health records (EHRs) in China during the past 10 years: consecutive survey data analysis and comparison of sino-american challenges and experiences J Med Internet Res 23 e24813-1015
[3]  
Kralovec P(2016)Extracting information from the text of electronic medical records to improve case detection: a systematic review J Am Med Inform Assoc 23 1007-49
[4]  
Foster G(2018)Clinical information extraction applications: a literature review J Biomed Inform 77 34-385
[5]  
Worzala C(2019)EXTraction of EMR numerical data: an efficient and generalizable tool to EXTEND clinical research BMC Med Inform Decis Mak 19 226-442
[6]  
Charles D(2021)A modified public health automated case event reporting platform for enhancing electronic laboratory reports with clinical data: design and implementation study J Med Internet Res 23 e26388-1679
[7]  
Liang J(2015)Specimen rejection in laboratory medicine: necessary for patient safety? Biochem Med (Zagreb) 25 377-757
[8]  
Li Y(2022)The role of electronic health record developers in hospital patient sharing J Am Med Inform Assoc 29 435-53
[9]  
Zhang Z(2014)Despite substantial progress in EHR adoption, health information exchange and patient engagement remain low in office settings Health Aff (Millwood) 33 1672-2304
[10]  
Shen D(2021)Application of optical character recognition with natural language processing for large-scale quality metric data extraction in colonoscopy reports Gastrointest Endosc 93 750-416