ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-Parabolicity and the Uniqueness of Spacelike Hypersurfaces Immersed in a Spatially Weighted GRW Spacetime

被引:0
|
作者
Alma L. Albujer
Henrique F. de Lima
Arlandson M. Oliveira
Marco Antonio L. Velásquez
机构
[1] Universidad de Córdoba,Departamento de Matemáticas, Campus Universitario de Rabanales
[2] Universidade Federal de Campina Grande,Departamento de Matemática
关键词
Spatially weighted generalized Robertson–Walker spacetimes; Bakry–Émery–Ricci tensor; Drifted Laplacian; -Parabolicity; Weighted mean curvature; Complete spacelike hypersurfaces; Entire vertical graphs; Primary 53C42; 53A07; Secondary 35P15;
D O I
10.1007/s00009-018-1134-8
中图分类号
学科分类号
摘要
In this paper, we extend a technique due to Romero et al. (Class Quantum Gravity 30:1–13, 2013; Int J Geom Methods Mod Phys 10:1360014, 2013; J Math Anal Appl 419:355–372, 2014) establishing sufficient conditions to guarantee the parabolicity of complete spacelike hypersurfaces immersed in a weighted generalized Robertson–Walker spacetime whose fiber has ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-parabolic universal Riemannian covering. As some applications of this criteria, we obtain uniqueness results concerning spacelike hypersurfaces immersed in spatially weighted generalized Robertson–Walker spacetimes. Furthermore, Calabi–Bernstein type results are also given.
引用
收藏
相关论文
共 4 条