Sharp regularity estimates for second order fully nonlinear parabolic equations

被引:0
|
作者
João Vitor da Silva
Eduardo V. Teixeira
机构
[1] Universidad de Buenos Aires,Department of Mathematics, FCEyN
[2] Ciudad Universitaria-Pabellón I-(C1428EGA),Departmento de Matemática
[3] Universidade Federal do Ceará,undefined
来源
Mathematische Annalen | 2017年 / 369卷
关键词
35K10; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
We prove sharp regularity estimates for viscosity solutions of fully nonlinear parabolic equations of the form Equt-FD2u,Du,X,t=f(X,t)inQ1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_t - F\left( D^2u, Du, X, t\right) = f(X,t) \quad \text{ in } \quad Q_1, \end{aligned}$$\end{document}where F is elliptic with respect to the Hessian argument and f∈Lp,q(Q1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in L^{p,q}(Q_1)$$\end{document}. The quantity Ξ(n,p,q):=np+2q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Xi (n, p, q) := \frac{n}{p}+\frac{2}{q}$$\end{document} determines to which regularity regime a solution of (Eq) belongs. We prove that when 1<Ξ(n,p,q)<2-ϵF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< \Xi (n,p,q) < 2-\epsilon _F$$\end{document}, solutions are parabolically α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Hölder continuous for a sharp, quantitative exponent 0<α(n,p,q)<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \alpha (n,p,q) < 1$$\end{document}. Precisely at the critical borderline case, Ξ(n,p,q)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Xi (n,p,q)= 1$$\end{document}, we obtain sharp parabolic Log-Lipschitz regularity estimates. When 0<Ξ(n,p,q)<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \Xi (n,p,q) <1$$\end{document}, solutions are locally of class C1+σ,1+σ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1+ \sigma , \frac{1+ \sigma }{2}}$$\end{document} and in the limiting case Ξ(n,p,q)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Xi (n,p,q) = 0$$\end{document}, we show parabolic C1,Log-Lip\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1, \text {Log-Lip}}$$\end{document} regularity estimates provided F has “better” a priori estimates.
引用
收藏
页码:1623 / 1648
页数:25
相关论文
共 50 条
  • [11] Optimal regularity estimates for general nonlinear parabolic equations
    Sun-Sig Byun
    Dian K. Palagachev
    Pilsoo Shin
    manuscripta mathematica, 2020, 162 : 67 - 98
  • [12] Optimal regularity estimates for general nonlinear parabolic equations
    Byun, Sun-Sig
    Palagachev, Dian K.
    Shin, Pilsoo
    MANUSCRIPTA MATHEMATICA, 2020, 162 (1-2) : 67 - 98
  • [13] Sharp regularity for a singular fully nonlinear parabolic free boundary problem
    Araujo, Damiao J.
    Sa, Ginaldo S.
    Urbano, Jose Miguel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 389 : 90 - 113
  • [14] New regularity estimates for fully nonlinear elliptic equations
    Nascimento, Thialita M.
    Teixeira, Eduardo V.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 171 : 1 - 25
  • [15] Modulus of continuity estimates for fully nonlinear parabolic equations
    Li, Xiaolong
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (05)
  • [16] Modulus of continuity estimates for fully nonlinear parabolic equations
    Xiaolong Li
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [17] Lorentz estimates for fully nonlinear parabolic and elliptic equations
    Zhang, Junjie
    Zheng, Shenzhou
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 148 : 106 - 125
  • [18] ON ESTIMATES FOR FULLY NONLINEAR PARABOLIC EQUATIONS ON RIEMANNIAN MANIFOLDS
    Guan, Bo
    Shi, Shujun
    Sui, Zhenan
    ANALYSIS & PDE, 2015, 8 (05): : 1145 - 1164
  • [19] Regularity for fully nonlinear nonlocal parabolic equations with rough kernels
    Joaquim Serra
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 615 - 629
  • [20] Regularity for fully nonlinear nonlocal parabolic equations with rough kernels
    Serra, Joaquim
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 615 - 629