On a ternary Diophantine inequality over primes

被引:0
作者
Yuhui Liu
机构
[1] Jiangnan University,School of Science
来源
The Ramanujan Journal | 2022年 / 59卷
关键词
Diophantine inequality; Prime; Exponential sum; Exponential pair; 11P55; 11J25;
D O I
暂无
中图分类号
学科分类号
摘要
Let 1<c<21097,c≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< c < \frac{210}{97}, c \ne 2$$\end{document}. In this paper, it is proved that for every sufficiently large real number N, for almost all real R∈(N,2N]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\in (N, 2N]$$\end{document}, the Diophantine inequality |p1c+p2c+p3c-R|<log-1N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |p_1^c + p_2^c + p_3^c - R| < \log ^{-1}N \end{aligned}$$\end{document}is solvable in primes p1,p2,p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3$$\end{document}. Moreover, we prove that the Diophantine inequality |p1c+p2c+p3c+p4c+p5c+p6c-N|<log-1N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |p_1^c + p_2^c + p_3^c + p_4^c + p_5^c + p_6^c - N| < \log ^{-1}N \end{aligned}$$\end{document}is solvable in primes p1,p2,p3,p4,p5,p6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3,p_4,p_5,p_6$$\end{document}. This result constitutes a refinement upon that of Cai (Int J Number Theory 14:2257–2268, 2018).
引用
收藏
页码:1287 / 1306
页数:19
相关论文
共 28 条
  • [1] Baker RC(2013)Some applications of the double large sieve Monatsh. Math. 170 261-304
  • [2] Weingartner AJ(2014)A ternary Diophantine inequality over primes Acta Arith. 162 159-196
  • [3] Baker RC(2021)Some diophantine equations and inequalities with primes Funct. Approx. Comment. Math. 64 203-250
  • [4] Weingartner AJ(2017)Decoupling, exponential sums and the Riemann zeta function J. Am. Math. Soc. 30 205-224
  • [5] Baker RC(1996)On a Diophantine inequality involving prime numbers Acta Math. Sin. 39 733-742
  • [6] Bourgain J(1999)On a Diophantine inequality involving prime numbers III Acta Math. Sin. 15 387-394
  • [7] Cai YC(2018)A ternary Diophantine inequality involving primes Int. J. Number Theory 14 2257-2268
  • [8] Cai YC(2002)A Diophantine inequality with prime numbers Acta Math. Sin. 45 361-370
  • [9] Cai YC(1983)The Pjateckiǐ–Šapiro prime number theorem J. Number Theory 16 242-266
  • [10] Cao XD(1999)A diophantine inequality involving prime powers Acta Arith. 89 311-330