Categories of quantum and classical channels

被引:0
作者
Bob Coecke
Chris Heunen
Aleks Kissinger
机构
[1] University of Oxford,Department of Computer Science
来源
Quantum Information Processing | 2016年 / 15卷
关键词
Abstract C*-algebras; Categorical quantum mechanics ; Completely positive maps; Quantum channel; 81P45; 16B50; 18D35; 46L89; 46N50; 81P16;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a construction that turns a category of pure state spaces and operators into a category of observable algebras and superoperators. For example, it turns the category of finite-dimensional Hilbert spaces into the category of finite-dimensional C*-algebras and completely positive maps. In particular, the new category contains both quantum and classical channels, providing elegant abstract notions of preparation and measurement. We also consider nonstandard models that can be used to investigate which notions from algebraic quantum information theory are operationally justifiable.
引用
收藏
页码:5179 / 5209
页数:30
相关论文
共 28 条
[1]  
Abramsky S(2012)H*-algebras and nonunital frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics Clifford Lect. 71 1-24
[2]  
Heunen C(1995)Comment on ‘reduced dynamics need not be completely positive’ Phys. Rev. Lett. 75 3020-402
[3]  
Alicki R(2012)Entangled and sequential quantum protocols with dephasing Phys. Rev. Lett. 108 120-290
[4]  
Boixo S(1975)Completely positive linear maps on complex matrices Linear Algebra Appl. 10 285-13
[5]  
Heunen C(2008)Axiomatic description of mixed states from Selinger’s CPM-construction Electron. Notes Theor. Comput. Sci. 210 3-35
[6]  
Choi MD(2012)Pictures of complete positivity in arbitrary dimension Electron. Proc. Theor. Comput. Sci. 95 27-567
[7]  
Coecke B(2012)A new description of orthogonal bases Math. Struct. Comput. Sci. 23 555-124
[8]  
Coecke B(2013)Relative frobenius algebras are groupoids J. Pure Appl. Algebra 217 114-78
[9]  
Heunen C(1993)Braided tensor categories Adv. Math. 102 20-548
[10]  
Coecke B(2002)Fundamentals of quantum information theory Phys. Rep. 369 431-1062