Gradient information distillation network for real-time single-image super-resolution

被引:1
|
作者
Bin Meng
Lining Wang
Zheng He
Gwanggil Jeon
Qingyu Dou
Xiaomin Yang
机构
[1] Sichuan University,College of Electronics and Information Engineering
[2] Sichuan University,School of Aeronautics & Astronautics
[3] Incheon National University,Department of Embedded Systems Engineering
[4] Sichuan University,The Center of Gerontology and Geriatrics, West China Hospital
来源
Journal of Real-Time Image Processing | 2021年 / 18卷
关键词
Gradient information distillation; Super-resolution; Real-time; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
In recent years, deep convolutional neural networks have played an increasingly important role in single-image super-resolution (SR). However, with the increase of the depth and width of networks, the super-resolution methods based on convolution neural networks are facing training difficulties, memory consumption, running slowness and other problems. Furthermore, most of the methods do not make full use of the image gradient information which leads to the loss of geometric structure information of the image. To solve these problems, we propose a gradient information distillation network in this paper. On the one hand, the advantages of fast and lightweight are maintained through information distillation. On the other hand, the SR performance is improved by gradient information. Our network has two branches named gradient information distillation branch (GIDB) and image information distillation branch. To combine features in both branches, we also introduce a residual feature transfer mechanism (RFT). Under the function of GIDB and RFT, our network can retain the rich geometric structure information which can make the edge details of the reconstructed image sharper. The experimental results show that our method is superior to the existing methods while well limits the parameters, computation and running time of the model. It provides the possibility for real-time image processing and mobile applications.
引用
收藏
页码:333 / 344
页数:11
相关论文
共 50 条
  • [21] A lightweight distillation recurrent convolution network on FPGA for real-time video super-resolution
    Zheng, Zhaowen
    Huang, Yuqiao
    Chen, Dihu
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [22] Unsupervised real image super-resolution via knowledge distillation network
    Yuan, Nianzeng
    Sun, Bangyong
    Zheng, Xiangtao
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 234
  • [23] FAST SINGLE-IMAGE SUPER-RESOLUTION WITH FILTER SELECTION
    Salvador, Jordi
    Perez-Pellitero, Eduardo
    Kochale, Axel
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 640 - 644
  • [24] Collaborative Representation Cascade for Single-Image Super-Resolution
    Zhang, Yongbing
    Zhang, Yulun
    Zhang, Jian
    Xu, Dong
    Fu, Yun
    Wang, Yisen
    Ji, Xiangyang
    Dai, Qionghai
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (05): : 845 - 860
  • [25] An adaptive regression based single-image super-resolution
    Hou, Mingzheng
    Feng, Ziliang
    Wang, Haobo
    Shen, Zhiwei
    Li, Sheng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (20) : 28231 - 28248
  • [26] Single-image super-resolution reconstruction using dark channel regularization network
    Di Zhang
    Jiazhong He
    Yun Zhao
    Huailing Zhang
    Signal, Image and Video Processing, 2021, 15 : 431 - 438
  • [27] An adaptive regression based single-image super-resolution
    Mingzheng Hou
    Ziliang Feng
    Haobo Wang
    Zhiwei Shen
    Sheng Li
    Multimedia Tools and Applications, 2022, 81 : 28231 - 28248
  • [28] Single-image super-resolution via selective multi-scale network
    Zewei He
    Binjie Ding
    Guizhong Fu
    Yanpeng Cao
    Jiangxin Yang
    Yanlong Cao
    Signal, Image and Video Processing, 2022, 16 : 937 - 945
  • [29] Attention Fusion Generative Adversarial Network for Single-Image Super-Resolution Reconstruction
    Peng Yanfei
    Zhang Pingjia
    Gao Yi
    Zi Lingling
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (20)
  • [30] Single-image super-resolution reconstruction using dark channel regularization network
    Zhang, Di
    He, Jiazhong
    Zhao, Yun
    Zhang, Huailing
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (02) : 431 - 438