Foundation of stochastic fractional calculus with fractional approximation of stochastic processes

被引:0
|
作者
George A. Anastassiou
机构
[1] University of Memphis,Department of Mathematical Sciences
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2020年 / 114卷
关键词
Stochastic positive linear operator; Fractional stochastic Korovkin theory and fractional inequalities; Fractional stochastic Shisha–Mond inequality; Stochastic modulus of continuity; Stochastic process; 26A33; 41A17; 41A25; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
Here we consider and study very general stochastic positive linear operators induced by general positive linear operators that are acting on continuous functions. These are acting on the space of real fractionally differentiable stochastic processes. Under some very mild, general and natural assumptions on the stochastic processes we produce related fractional stochastic Shisha–Mond type inequalities of Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{q}$$\end{document}-type 1≤q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le q\,<\infty $$\end{document} and corresponding fractional stochastic Korovkin type theorems. These are regarding the stochastic q-mean fractional convergence of a sequence of stochastic positive linear operators to the stochastic unit operator for various cases. All convergences are produced with rates and are given via the fractional stochastic inequalities involving the stochastic modulus of continuity of the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-th fractional derivatives of the engaged stochastic process, α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}, α∉N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \notin \mathbb {N}$$\end{document}. The impressive fact is that the basic real Korovkin test functions assumptions are enough for the conclusions of our fractional stochastic Korovkin theory. We give applications to stochastic Bernstein operators.
引用
收藏
相关论文
共 50 条
  • [31] Nonlinearly Perturbed Stochastic Processes and Systems
    Silvestrov, Dmitrii S.
    MATHEMATICAL AND STATISTICAL MODELS AND METHODS IN RELIABILITY: APPLICATIONS TO MEDICINE, FINANCE, AND QUALITY CONTROL, 2010, : 19 - 37
  • [32] Optimized combinatorial clustering for stochastic processes
    Kim, Jumi
    Lee, Wookey
    Song, Justin Jongsu
    Lee, Soo-Bok
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2017, 20 (02): : 1135 - 1148
  • [33] Some properties of η-convex stochastic processes
    Jung, Chahn Yong
    Saleem, Muhammad Shoaib
    Bilal, Shamas
    Nazeer, Waqas
    Ghafoor, Mamoona
    AIMS MATHEMATICS, 2021, 6 (01): : 726 - 736
  • [34] Stochastic processes in the causation of rheumatic disease
    Roberts-Thomson, PJ
    Jones, ME
    Walker, JG
    MacFarlane, JG
    Smith, MD
    Ahern, MJ
    JOURNAL OF RHEUMATOLOGY, 2002, 29 (12) : 2628 - 2634
  • [35] A New Approach on the Approximate ControllabilityResults for Hilfer Fractional Stochastic HemivariationalInequalities of Order 1&lt;μ&lt;2
    Pradeesh, J.
    Vijayakumar, V.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (04)
  • [36] Approximation of the distribution of convergence times for stochastic global optimisation
    Wood, GR
    Alexander, DLJ
    Bulger, DW
    JOURNAL OF GLOBAL OPTIMIZATION, 2002, 22 (1-4) : 271 - 284
  • [37] Approximation of the distribution of convergence times for stochastic global optimisation
    G. R. Wood
    D. L. J. Alexander
    D. W. Bulger
    Journal of Global Optimization, 2002, 22 : 271 - 284
  • [39] Classification of stochastic processes by convolutional neural networks
    AL-hada, Eman A.
    Tang, Xiangong
    Deng, Weihua
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (27)
  • [40] On continuous local times for functions and stochastic processes
    Nasyrov F.S.
    Journal of Mathematical Sciences, 1997, 84 (3) : 1128 - 1137