Foundation of stochastic fractional calculus with fractional approximation of stochastic processes

被引:0
|
作者
George A. Anastassiou
机构
[1] University of Memphis,Department of Mathematical Sciences
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2020年 / 114卷
关键词
Stochastic positive linear operator; Fractional stochastic Korovkin theory and fractional inequalities; Fractional stochastic Shisha–Mond inequality; Stochastic modulus of continuity; Stochastic process; 26A33; 41A17; 41A25; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
Here we consider and study very general stochastic positive linear operators induced by general positive linear operators that are acting on continuous functions. These are acting on the space of real fractionally differentiable stochastic processes. Under some very mild, general and natural assumptions on the stochastic processes we produce related fractional stochastic Shisha–Mond type inequalities of Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{q}$$\end{document}-type 1≤q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le q\,<\infty $$\end{document} and corresponding fractional stochastic Korovkin type theorems. These are regarding the stochastic q-mean fractional convergence of a sequence of stochastic positive linear operators to the stochastic unit operator for various cases. All convergences are produced with rates and are given via the fractional stochastic inequalities involving the stochastic modulus of continuity of the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-th fractional derivatives of the engaged stochastic process, α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}, α∉N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \notin \mathbb {N}$$\end{document}. The impressive fact is that the basic real Korovkin test functions assumptions are enough for the conclusions of our fractional stochastic Korovkin theory. We give applications to stochastic Bernstein operators.
引用
收藏
相关论文
共 50 条
  • [21] The optimized expansion for stochastic processes
    Okopinska, A
    SIMILARITY IN DIVERSITY, 2003, : 189 - 198
  • [22] DISTANCE COVARIANCE FOR STOCHASTIC PROCESSES
    Matsui, Muneya
    Mikosch, Thomas
    Samorodnitsky, Gennady
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2017, 37 (02): : 355 - 372
  • [23] NUMERICAL ALGORITHMS FOR STOCHASTIC PROCESSES
    Janak, Josef
    13TH INTERNATIONAL DAYS OF STATISTICS AND ECONOMICS, 2019, : 553 - 567
  • [24] Multi-Harmonic Balance Method for Stochastic Response Determination of Duffing Oscillator Endowed with Fractional Derivative
    Kong F.
    Wang H.
    Xu J.
    Dong H.
    Yingyong Jichu yu Gongcheng Kexue Xuebao/Journal of Basic Science and Engineering, 2023, 31 (01): : 103 - 112
  • [25] Qualitative robustness of estimators on stochastic processes
    Strohriegl, Katharina
    Hable, Robert
    METRIKA, 2016, 79 (08) : 895 - 917
  • [26] Distance covariance for discretized stochastic processes
    Dehling, Herold
    Matsui, Muneya
    Mikosch, Thomas
    Samorodnitsky, Gennady
    Tafakori, Laleh
    BERNOULLI, 2020, 26 (04) : 2758 - 2789
  • [27] Optimized combinatorial clustering for stochastic processes
    Jumi Kim
    Wookey Lee
    Justin Jongsu Song
    Soo-Bok Lee
    Cluster Computing, 2017, 20 : 1135 - 1148
  • [28] Computation in finitary stochastic and quantum processes
    Wiesner, Karoline
    Crutchfield, James P.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (09) : 1173 - 1195
  • [29] Stochastic processes for line shapes and intensities
    Stamm, R.
    Hammami, R.
    Hannachi, I.
    Capes, H.
    Godbert-Mouret, L.
    Koubiti, M.
    Marandet, Y.
    Rosato, J.
    ADVANCES IN SPACE RESEARCH, 2014, 54 (07) : 1152 - 1158
  • [30] Qualitative robustness of estimators on stochastic processes
    Katharina Strohriegl
    Robert Hable
    Metrika, 2016, 79 : 895 - 917