Periodic Klein–Gordon Chains with Three Particles in 1:2:2 Resonance

被引:0
|
作者
Reza Mazrooei-Sebdani
Elham Hakimi
机构
[1] Isfahan University of Technology,Department of Mathematical Sciences
来源
Journal of Dynamics and Differential Equations | 2022年 / 34卷
关键词
Klein–Gordon; Hamiltonian normal form; 1 : 2 : 2 resonance; Reduction; Bifurcation; Hamiltonian pitchfork bifurcation; 37J12; 37N20; 37J40; 70K30; 37J35; 70H06; 70H33; 70K45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we deal with the three degrees of freedom Hamiltonian systems describing the Klein–Gordon chains with three particles of equal masses and periodic boundary conditions. Specially, we focus on the case that the frequencies of the linearization are in 1 : 2 : 2 resonance. After second normalization the truncated normal form gives rise to an integrable system. Also, we calculate the coefficients of the terms that remain in normal form. Considering perturbation in frequencies, we analyze the dynamical features of this one degree of freedom system on the reduced phase space by calculating its equilibria and bifurcations. Specifically supercritical and subcritical Hamiltonian pitchfork bifurcations are found in different scenarios of parameters.
引用
收藏
页码:1349 / 1370
页数:21
相关论文
共 50 条
  • [1] Periodic Klein-Gordon Chains with Three Particles in 1:2:2 Resonance
    Mazrooei-Sebdani, Reza
    Hakimi, Elham
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (02) : 1349 - 1370
  • [2] Multiple Periodic Vibrations of Auxetic Honeycomb Sandwich Plate with 1:2 Internal Resonance
    Zhu, Shaotao
    Li, Jing
    Qiao, Zhijun
    Zhou, Ji
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2022, 29 (02) : 423 - 444
  • [3] Multiple Periodic Vibrations of Auxetic Honeycomb Sandwich Plate with 1:2 Internal Resonance
    Shaotao Zhu
    Jing Li
    Zhijun Qiao
    Ji Zhou
    Journal of Nonlinear Mathematical Physics, 2022, 29 : 423 - 444
  • [4] The 1:±2 resonance
    R. H. Cushman
    H. R. Dullin
    H. Hanßmann
    S. Schmidt
    Regular and Chaotic Dynamics, 2007, 12 : 642 - 663
  • [5] The 1:±2 resonance
    Cushman, R. H.
    Dullin, H. R.
    Hanssmann, H.
    Schmidt, S.
    REGULAR & CHAOTIC DYNAMICS, 2007, 12 (06) : 642 - 663
  • [6] Steady state motions of shallow arch under periodic force with 1:2 internal resonance on the plane of physical parameters
    Bi, QS
    Chen, YS
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1998, 19 (07) : 625 - 635
  • [7] Bifurcation analysis of quasi-periodic orbits of mechanical systems with 1:2 internal resonance via spectral submanifolds
    Liang, Hongming
    Jain, Shobhit
    Li, Mingwu
    NONLINEAR DYNAMICS, 2024, : 12609 - 12640
  • [8] Steady state motions of shallow arch under periodic force with 1:2 internal resonance on the plane of physical parameters
    Qinsheng B.
    Yushu C.
    Applied Mathematics and Mechanics, 1998, 19 (7) : 625 - 635
  • [9] Bifurcations and monodromy of the axially symmetric 1:1:-2 resonance
    Efstathiou, Konstantinos
    Hanssmann, Heinz
    Marchesiello, Antonella
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 146
  • [10] Exploring three periodic point dynamics in 2D spatiotemporal discrete systems
    Sahari, Mohamed Lamine
    Taha, Abdel-Kaddous
    Randriamihamison, Louis
    AIMS MATHEMATICS, 2025, 10 (03): : 5021 - 5051