A Hilbert-type theorem for spacelike surfaces with constant Gaussian curvature in ℍ2 × ℝ1

被引:0
作者
Alma L. Albujer
Luis J. Alías
机构
[1] Universidad de Alicante,Departamento de Estadística e Investigación Operativa
[2] Universidad de Murcia,Departamento de Matemáticas
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2009年 / 40卷
关键词
Hilbert-type theorem; spacelike surfaces; Lorentzian product space; Gaussian curvature; Codazzi pairs; 53C42; 53C50;
D O I
暂无
中图分类号
学科分类号
摘要
There are examples of complete spacelike surfaces in the Lorentzian product ℍ2 × ℝ1 with constant Gaussian curvature K ≤ −1. In this paper, we show that there exists no complete spacelike surface in ℍ2 × ℝ1 with constant Gaussian curvature K > −1.
引用
收藏
页码:465 / 478
页数:13
相关论文
共 13 条
  • [1] Albujer A.L.(2009)Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces J. Geom. Phys. 59 620-631
  • [2] Alías L.J.(2007) H Calc. Variations & PDEs 29 347-363
  • [3] Aledo J.A.(1959) × ℝ Amer. J. Math. 81 901-920
  • [4] Espinar J.M.(1901) × ℝ Trans. Am. Math. Soc. 2 87-99
  • [5] Gálvez J.A.(1900)On spherical images whose jacobians do not change signs Math. Ann. 53 81-112
  • [6] Hartman P.(1962)Über Flächen von konstanter Gausscher Krümung Tohoku Math. J. 14 73-79
  • [7] Nirenberg L.(1980)Ueber die Verbiegung der geschlossenen Flächen positiver Krümmung J. Diff. Geom. 15 365-380
  • [8] Hilbert D.(1961)Surfaces of Gaussian curvature zero in Euclidean space Comm. Pure Appl. Math. 14 627-635
  • [9] Liebmann H.(1972)Abstract Weingarten Surfaces Comm. Math. Helv. 47 348-372
  • [10] Massey W.S.(undefined)Developable surfaces in the large undefined undefined undefined-undefined