Tangent modulus tensor in plasticity under finite strain

被引:0
|
作者
D. W. Nicholson
B. Lin
机构
[1] University of Central Florida,Institute for Computational Engineering, Department of Mechanical, Materials and Aerospace Engineering
来源
Acta Mechanica | 1999年 / 134卷
关键词
Finite Element Simulation; Incompressibility; Kronecker Product; Isotropic Hardening; Kinematic Hardening;
D O I
暂无
中图分类号
学科分类号
摘要
The tangent modulus tensor, denoted as\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{D}$$ \end{document}, plays a central role in finite element simulation of nonlinear applications such as metalforming. Using Kronecker product notation, compact expressions for\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{D}$$ \end{document} have been derived in Refs. [1]–[3] for hyperelastic materials with reference to the Lagrangian configuration. In the current investigation, the corresponding expression is derived for materials experiencing finite strain due to plastic flow, starting from yield and flow relations referred to the current configuration. Issues posed by the decomposition into elastic and plastic strains and by the objective stress flux are addressed. Associated and non-associated models are accommodated, as is “plastic incompressibility”. A constitutive inequality with uniqueness implications is formulated which extends the condition for “stability in the small” to finite strain. Modifications of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{D}$$ \end{document} are presented which accommodate kinematic hardening. As an illustration,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{D}$$ \end{document} is presented for finite torsion of a shaft, comprised of a steel described by a von Mises yield function with isotropic hardening.
引用
收藏
页码:199 / 215
页数:16
相关论文
共 50 条
  • [41] Simulation of PLC Effect Using Regularized Large-Strain Elasto-Plasticity
    Mucha, Marzena
    Wcislo, Balbina
    Pamin, Jerzy
    MATERIALS, 2022, 15 (12)
  • [42] CYCLIC PLASTICITY MODELLING FOR ANDES THIN SHELL AND LINE-SPRING FINITE ELEMENTS
    Berg, Espen
    Holthe, Kjell
    Skallerud, Bjorn
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2009, 1 (01) : 201 - 232
  • [43] An adaptive least-squares mixed finite element method for elasto-plasticity
    Starke, Gerhard
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (01) : 371 - 388
  • [44] Predicting forming limit diagrams for magnesium alloys using crystal plasticity finite elements
    Bong, Hyuk Jong
    Lee, Jinwoo
    Hu, Xiaohua
    Sun, Xin
    Lee, Myoung-Gyu
    INTERNATIONAL JOURNAL OF PLASTICITY, 2020, 126
  • [45] On the orthogonal subgrid scale pressure stabilization of finite deformation J2 plasticity
    de Saracibar, CA
    Chiumenti, M
    Valverde, Q
    Cervera, M
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (9-12) : 1224 - 1251
  • [46] Bauschinger effect of alloys and plasticity-induced crack closure: a finite element analysis
    Pommier, S
    Bompard, P
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2000, 23 (02) : 129 - 139
  • [47] Damage-Coupled Cyclic Plasticity Model for Prediction of Ratcheting-Fatigue Behavior under Strain and Stress Controlled Ratcheting for Two Different Nuclear Piping Steels
    Das, P.
    Khutia, N.
    Dey, P. P.
    Arora, Punit
    Gupta, Suneel K.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (20) : 10745 - 10756
  • [48] Comparison of ultrasound elastography, magnetic resonance elastography and finite element model to quantify nonlinear shear modulus
    Page, Gwenael
    Bied, Marion
    Garteiser, Philippe
    Van Beers, Bernard
    Etaix, Nicolas
    Fraschini, Christophe
    Bel-Brunon, Aline
    Gennisson, Jean-Luc
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (20):
  • [49] Finite Element Simulation of Strain Localization on a Shear Band of Structural Soil
    Li, Hong-Ru
    Zhong, Yuan
    Zhao, Hua-Pen
    Ai, Sheng-Hong
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON MECHANICS AND CIVIL ENGINEERING, 2014, 7 : 517 - 523
  • [50] Simulation of distortional hardening by generalizing a uniaxial model of finite strain viscoplasticity
    Freund, M.
    Shutov, A. V.
    Ihlemann, J.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2012, 36 : 113 - 129