Asymptotic expansions of the error for hyper-singular integrals with an interval variable

被引:0
作者
Chong Chen
Jin Huang
Yanying Ma
机构
[1] University of Electronic Science and Technology of China,School of Mathematical Sciences
来源
Journal of Inequalities and Applications | / 2016卷
关键词
hyper-singular integral; Euler-Maclaurin expansions; quadrature formulas; Hadamard finite part; 45E99; 65D30; 65D32; 41A55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present high accuracy quadrature formulas for hyper-singular integrals ∫abg(x)qα(x,t)dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int_{a}^{b}g(x)q^{\alpha}(x,t)\, dx$\end{document}, where q(x,t)=|x−t|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q(x,t)=|x-t|$\end{document} (or x−t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x-t$\end{document}), t∈(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\in(a,b)$\end{document}, and α≤−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\leq-1$\end{document} (or α<−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha<-1$\end{document}). If g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(x)$\end{document} is 2m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2m+1$\end{document} times differentiable on [a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[a,b]$\end{document}, the asymptotic expansions of the error show that the convergence order is O(h2μ+1+α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(h^{2\mu+1+\alpha})$\end{document} with q(x,t)=|x−t|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q(x,t)=|x-t|$\end{document} (or x−t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x-t$\end{document}) for α≤−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\leq-1$\end{document} (or α<−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha<-1$\end{document} and α being non-integer), and the error power is O(hη)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(h^{\eta})$\end{document} with q(x,t)=x−t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q(x,t)=x-t$\end{document} for α being integers less than −1, where η=min(2μ,2μ+2+α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\eta =\min(2\mu,2\mu+2+\alpha)$\end{document} and μ=1,…,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu=1,\ldots,m$\end{document}. Since the derivatives of the density function g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(x)$\end{document} in the quadrature formulas can be eliminated by means of the extrapolation method, the formulas can easily be applied to solving corresponding hyper-singular boundary integral equations. The reliability and efficiency of the proposed formulas in this paper are demonstrated by some numerical examples.
引用
收藏
相关论文
共 40 条
  • [1] Monegato G(1998)The Euler-Maclaurin expansion and finite-part integrals Numer. Math. 81 273-291
  • [2] Lyness JN(2001)Hyper-singular boundary integral equation for axisymmetric elasticity Int. J. Numer. Methods Eng. 52 1337-1354
  • [3] de Lacerda LA(2012)Hyper-singular integral operators on modulation spaces for J. Inequal. Appl. 2012 1669-1681
  • [4] Wrobel LC(2002)Analytical study and numerical experiments for degenerate scale problems in the boundary element method for two-dimensional elasticity Int. J. Numer. Methods Eng. 54 469-486
  • [5] Cheng M(2014)Simulation of floating potentials in industrial applications by boundary element methods J. Math. Ind. 4 257-279
  • [6] Chen JT(2003)Two trigonometric quadrature formulae for evaluating hyper-singular integrals Int. J. Numer. Methods Eng. 56 617-638
  • [7] Kuo SR(2013)Asymptotic error expansions for hyper-singular integrals Adv. Comput. Math. 38 205-214
  • [8] Lin JH(1998)Numerical solution of integral equations with logarithmic-, Cauchy- and Hadamard-type singularities Int. J. Numer. Methods Eng. 41 441-454
  • [9] Amann D(1999)Evaluations of hyper-singular integrals using Gaussian quadrature Int. J. Numer. Methods Eng. 44 201-231
  • [10] Blaszczyk A(2004)Hyper-singular integral equation method for three-dimensional crack problem in shear mode Commun. Numer. Methods Eng. 20 1551-1584