The Regularized Mesh Scheme to Solve Quasilinear Parabolic Equation with Time-Fractional Derivative

被引:0
作者
A. V. Lapin
E. Laitinen
机构
[1] Department of Higher Mathematics,
[2] Mechanics,undefined
[3] and Mathematical Modelling,undefined
[4] Institute of Personalized Medicine,undefined
[5] Sechenov University,undefined
[6] Faculty of Science,undefined
[7] Research Unit of Mathematical Sciences,undefined
[8] University of Oulu,undefined
来源
Lobachevskii Journal of Mathematics | 2021年 / 42卷
关键词
quasilinear parabolic problem; time-fractional derivative; regularized scheme; stability; accuracy;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1706 / 1714
页数:8
相关论文
共 42 条
  • [1] Jin B.(2018)Numerical analysis of nonlinear subdiffusion equations SIAM J. Numer. Anal. 56 1-23
  • [2] Li B.(2018)Analysis of Commun. Comput. Phys. 24 86-103
  • [3] Zhou Z.(2018)Unconditionally optimal orror Estimates of a linearized Galerkin method for nonlinear time fractional reaction–subdiffusion equations J. Sci. Comput. 76 848-866
  • [4] Li D.(2002)Compact alternating direction implicit scheme for the two dimensional fractional diffusion-wave equation SIAM J. Numer. Anal. 50 1535-1555
  • [5] Liao H.-L.(2016)A novel compact ADI scheme for the time-fractional subdiffusion equation in two space dimensions Int. J. Comput. Math. 93 889-914
  • [6] Sun W.(2016)Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations J. Sci. Comput. 66 1281-1312
  • [7] Wang J.(2016)ADI finite element method for 2D nonlinear time fractional reaction-subdiffusion equation Am. J. Comput. Math. 6 336-356
  • [8] Zhang J.(2020)Chen, and J. Guo, “An alternating direction implicit Galerkin finite element method for the distributed-order time-fractional mobile-immobile equation in two dimensions Comput. Math. Appl. 80 3156-3172
  • [9] Li D.(2020)Numerical solution of a quasilinear parabolic equation with a fractional time derivative Lobachevskii J. Math. 41 2673-2686
  • [10] Zhang J.(2015)Diffusion and Fokker–Planck–Smoluchowski equations with generalized memory kernel Fract. Calc. Appl. Anal. 18 1006-1038