Finite element modeling of melt pool dynamics in laser powder bed fusion of 316L stainless steel

被引:0
作者
Juan Trejos-Taborda
Luis Reyes-Osorio
Carlos Garza
Patricia del Carmen Zambrano-Robledo
Omar Lopez-Botello
机构
[1] Centro de Investigación E Innovación en Ingeniería Aeronáutica (CIIIA),Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica Y Eléctrica
[2] Tecnologico de Monterrey,undefined
[3] Laboratorio Nacional de Manufactura Aditiva Y Digital (MADiT),undefined
[4] Consejo Nacional de Ciencia Y Tecnología (CONACyT),undefined
来源
The International Journal of Advanced Manufacturing Technology | 2022年 / 120卷
关键词
Additive manufacturing; Melt pool dynamics; Laser powder bed fusion; Finite element method;
D O I
暂无
中图分类号
学科分类号
摘要
In laser powder bed fusion (LPBF), the stability of melt pool dynamics determines the overall quality of a manufactured component. In this work, a numerical model of the LPBF process was developed in order to study and fully understand the behavior of the melt pool dynamics. The numerical model takes into account most of the manufacturing parameters, thermophysical properties, an enhanced thermal conductivity approach, and a volumetric heat source in order to precisely simulate LPBF. This research assumes that the energy emitted by the laser interacts with the metal powder with an absorptivity gradient through the layer thickness in order to calculate the thermal history of the process and the evolution of the melt pool dimensions. The obtained results determined that melt pool dimensions follow a thermal pattern, which is caused by the laser scanning strategy of the LPBF process. A new effective width criterion was proposed in the present research in order to accurately relate both calculated and measured dimensions of the melt pool, reducing the relative error of the model and obtaining data scattering with a standard deviation of ± 7.21 µm and a relative error of 2.92%.
引用
收藏
页码:3947 / 3961
页数:14
相关论文
共 50 条
  • [21] Microstructural characterization and mechanical behaviour of laser powder Bed Fusion stainless steel 316L
    Crisafulli, Davide
    Fintova, Stanislava
    Santonocito, Dario
    D'Andrea, Danilo
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2024, 131
  • [22] Fatigue behavior of stainless steel 316L microstruts fabricated by laser powder bed fusion
    Ghosh, Abhi
    Kumar, Amit
    Harris, Adrian
    Kietzig, Anne-Marie
    Brochu, Mathieu
    MATERIALIA, 2022, 26
  • [23] Microstructure and Solute Segregation around the Melt-Pool Boundary of Orientation-Controlled 316L Austenitic Stainless Steel Produced by Laser Powder Bed Fusion
    Sato, Kazuhisa
    Takagi, Shunya
    Ichikawa, Satoshi
    Ishimoto, Takuya
    Nakano, Takayoshi
    MATERIALS, 2023, 16 (01)
  • [24] Investigation of the strengthening mechanism in 316L stainless steel produced with laser powder bed fusion
    Riabov, D.
    Leicht, A.
    Ahlstrom, J.
    Hryha, E.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 822 (822):
  • [25] Transverse varestraint weldability testing in laser powder bed fusion 316L stainless steel
    Guzman, Jhoan
    Riffel, Kaue C.
    Berkson, Jacque W.
    Casto, Samuel
    Ramirez, Antonio J.
    WELDING IN THE WORLD, 2025, 69 (04) : 1045 - 1056
  • [26] Fabrication of 316L stainless steel with TiN addition by vacuum laser powder bed fusion
    Srisawadi, Sasitorn
    Tanprayoon, Dhritti
    Sato, Yuji
    Tsukamoto, Masahiro
    Suga, Tetsuo
    OPTICS AND LASER TECHNOLOGY, 2020, 126 (126)
  • [27] Process and feedstock driven microstructure for laser powder bed fusion of 316L stainless steel
    Heiden, Michael J.
    Jensen, Scott C.
    Koepke, Josh R.
    Saiz, David J.
    Dickens, Sara M.
    Jared, Bradley H.
    MATERIALIA, 2022, 21
  • [28] Size effect due to contour laser scanning in 316L stainless steel produced by laser powder bed fusion
    Yu, Jaehyun
    Kim, Dohyung
    Ha, Kyeongsik
    Jeon, Jong Bae
    Kim, Dong Joo
    Lee, Wookjin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 15 : 5554 - 5568
  • [29] Increasing the Productivity of Laser Powder Bed Fusion for Stainless Steel 316L through Increased Layer Thickness
    Leicht, Alexander
    Fischer, Marie
    Klement, Uta
    Nyborg, Lars
    Hryha, Eduard
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (01) : 575 - 584
  • [30] Heat Treatment Effect on the Corrosion Resistance of 316L Stainless Steel Produced by Laser Powder Bed Fusion
    Sangoi, Kevin
    Nadimi, Mahdi
    Song, Jie
    Fu, Yao
    METALS, 2025, 15 (01)