Stability for a Class of Extensible Beams with Degenerate Nonlocal Damping

被引:0
作者
Cong Zhou
Chunyou Sun
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
The Journal of Geometric Analysis | 2023年 / 33卷
关键词
Beam model; Degenerate nonlocal damping; Well-posedness; Stability; 35B35; 35L35; 35L76; 35Q74; 74K20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the well-posedness and stability of the beam model with degenerate nonlocal damping: utt+Δ2u-M(‖∇u‖2)Δu+(‖Δu‖θ+q‖ut‖ρ)(-Δ)δut+f(u)=0inΩ×R+,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ u_{tt}+\Delta ^2u-M(\Vert \nabla u\Vert ^2)\Delta u+(\Vert \Delta u\Vert ^\theta +q\Vert u_t\Vert ^\rho )(-\Delta )^\delta u_t+f(u)=0\ \ \hbox {in} \ \ \Omega \times {\mathbb {R}}^+,$$\end{document} where Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^n$$\end{document} is a bounded domain with smooth boundary, θ≥1,q≥0,ρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \ge 1,~q\ge 0,~\rho >0$$\end{document} and 0≤δ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \delta \le 1$$\end{document}. The main purpose in the present paper is to show that the transition from the case q=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=0$$\end{document} to the case q>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>0$$\end{document} produces an explicit influence on the stability of energy solutions. More precisely, when q=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=0$$\end{document}, we conclude that the energy goes to zero as t goes to infinity without an explicit decay rate; while when q>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>0$$\end{document}, we present a polynomial decay rate of type (1+t)-2ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+t)^{-\frac{2}{\rho }}$$\end{document} that depends only on the exponent ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} of the velocity term, not on θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}. Furthermore, we prove that the energy cannot be exponentially stable and derive more accurate decay rates of the energy.
引用
收藏
相关论文
共 42 条
  • [1] Cavalcanti MM(2021)Stability for extensible beams with a single degenerate nonlocal damping of Balakrishnan–Taylor type J. Differ. Equ. 290 197-222
  • [2] Domingos Cavalcanti VN(2004)Exponential decay of the viscoelastic Euler–Bernoulli equation with a nonlocal dissipation in general domains Differ. Integral Equ. 17 495-510
  • [3] Jorge Silva MA(2002)On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation Commun. Partial Differ. Equ. 27 1901-1951
  • [4] Narciso V(2012)Long-time dynamics in plate models with strong nonlinear damping Commun. Pure Appl. Anal. 11 659-674
  • [5] Cavalcanti MM(2023)Continuous dependence on initial data and high energy blowup time estimate for porous elastic system Commun. Anal. Mech. 15 214-244
  • [6] Domingos Cavalcanti VN(2023)Uniform decay estimates for the semi-linear wave equation with locally distributed mixed-type damping via arbitrary local viscoelastic versus frictional dissipative effects Adv. Nonlinear Anal. 12 Paper No. 20220285, 37 pp-1008
  • [7] Ma TF(2015)Attractors and their properties for a class of nonlocal extensible beams Discret. Contin. Dyn. Syst. 35 985-470
  • [8] Chueshov I(2017)Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping Evol. Equ. Control Theory 6 437-3298
  • [9] Eller M(2019)On a beam model related to flight structures with nonlocal energy damping Discret. Contin. Dyn. Syst. Ser. B 24 3281-1092
  • [10] Lasiecka I(1997)Rates of decay of a nonlocal beam equation Differ. Integral Equ. 10 1075-549