Nonsmooth ρ − (η, θ)-invexity in multiobjective programming problems

被引:0
作者
C. Nahak
Ram N. Mohapatra
机构
[1] Indian Institute of Technology,Department of Mathematics
[2] University of Central Florida,Department of Mathematics
来源
Optimization Letters | 2012年 / 6卷
关键词
Multiobjective programming; Optimality; Duality; Nonsmooth ; − (; , ; )-invexity; Efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we extend Reiland’s results for a nonlinear (single objective) optimization problem involving nonsmooth Lipschitz functions to a nonlinear multiobjective optimization problem (MP) for ρ − (η, θ)-invex functions. The generalized form of the Kuhn–Tucker optimality theorem and the duality results are established for (MP).
引用
收藏
页码:253 / 260
页数:7
相关论文
共 25 条
[1]  
Ben-Israel A.(1986)What is invexity? J. Austral. Math. Soc. (Series B) 28 1-9
[2]  
Mond B.(2007)A survey of recent developments in multiobjective optimization Ann. Oper. Res. 154 29-50
[3]  
Chinchuluun A.(1985)Invex functions and duality J. Austral. Math. Soc. (Series A) 39 1-20
[4]  
Pardalos P.M.(2010)Second order duality for nondifferentiable multiobjective programming problem involving ( Optim. Lett. 4 211-226
[5]  
Craven B.D.(1981), J. Math. Anal. Appl. 80 545-550
[6]  
Glover B.M.(1978), Math. Programm. 14 73-86
[7]  
Jayswal A.(1991), J. Inform. Optim. Sci. 12 235-242
[8]  
Kumar D.(1993)) − J. Inform. Optim. Sci. 14 149-153
[9]  
Kumar R.(1996) − Optimization 36 235-248
[10]  
Hanson M.A.(2006) functions J. Optim. Theory Appl. 129 185-199