Let G be an A-group (i.e. a group in which xxα = xαx for all \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x \in G, \alpha \in {\rm Aut}(G))$$\end{document} and let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A_\mathcal{C}(G)$$\end{document} denote the subgroup of Aut(G) consisting of all automorphisms that leave invariant the centralizer of each element of G. The quotient \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rm Aut}(G)/A_\mathcal{C}(G)$$\end{document} is an elementary abelian 2-group and natural analogies exist to suggest that it might always be trivial. It is shown that, in fact, for any odd prime p and any positive integer r, there exist infinitely many finite pA-groups G for which \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rm Aut}(G)/A_\mathcal {C}(G)$$\end{document} has rank r.