On automorphisms of A-groups

被引:0
作者
Martin R. Pettet
机构
[1] The University of Toledo,Department of Mathematics
来源
Archiv der Mathematik | 2008年 / 91卷
关键词
-group; graph; automorphism; Primary 20D45; Secondary 20D15, 16Y30;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be an A-group (i.e. a group in which xxα = xαx for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in G, \alpha \in {\rm Aut}(G))$$\end{document} and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_\mathcal{C}(G)$$\end{document} denote the subgroup of Aut(G) consisting of all automorphisms that leave invariant the centralizer of each element of G. The quotient \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Aut}(G)/A_\mathcal{C}(G)$$\end{document} is an elementary abelian 2-group and natural analogies exist to suggest that it might always be trivial. It is shown that, in fact, for any odd prime p and any positive integer r, there exist infinitely many finite pA-groups G for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Aut}(G)/A_\mathcal {C}(G)$$\end{document} has rank r.
引用
收藏
页码:289 / 299
页数:10
相关论文
empty
未找到相关数据