Impute the missing data using retrieved dropouts

被引:0
|
作者
Shuai Wang
Haoyan Hu
机构
[1] Global Product Development,Department of Statistics
[2] Pfizer Inc,undefined
[3] Iowa State University,undefined
来源
BMC Medical Research Methodology | / 22卷
关键词
Missing not at random; Multiple imputation; Treatment policy; ICH E9 (R1); Retrieved dropouts;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Impute the missing data using retrieved dropouts
    Wang, Shuai
    Hu, Haoyan
    BMC MEDICAL RESEARCH METHODOLOGY, 2022, 22 (01)
  • [2] Imputation of Missing Data for Time-to-Event Endpoints Using Retrieved Dropouts
    Wang, Shuai
    Frederich, Robert
    Mancuso, James P.
    THERAPEUTIC INNOVATION & REGULATORY SCIENCE, 2024, 58 (01) : 114 - 126
  • [3] Imputation of Missing Data for Time-to-Event Endpoints Using Retrieved Dropouts
    Shuai Wang
    Robert Frederich
    James P. Mancuso
    Therapeutic Innovation & Regulatory Science, 2024, 58 : 114 - 126
  • [4] An adaptive imputation method of missing data for sparsely retrieved dropouts in treatment policy strategy
    Yuan, Chuanji
    Yang, Zhenyu
    Liu, Jiaqing
    Li, Xiaozhou
    Chen, Bokai
    Han, Tao
    Yu, Qian
    Li, Zuojing
    CONTEMPORARY CLINICAL TRIALS, 2025, 152
  • [5] Bootstrap and Nonparametric Predictors to Impute Missing Data
    Di Ciaccio, Agostino
    CLASSIFICATION AND MULTIVARIATE ANALYSIS FOR COMPLEX DATA STRUCTURES, 2011, : 203 - 210
  • [6] Comprehensive implementations of multiple imputation using retrieved dropouts for continuous endpoints
    Wang, Shuai
    Schwartz, Pamela F.
    Mancuso, James P.
    BMC MEDICAL RESEARCH METHODOLOGY, 2025, 25 (01)
  • [7] Methods for Using Data Abstracted from Medical Charts to Impute Longitudinal Missing Data in a Clinical Trial
    Hebert, Paul L.
    Taylor, Leslie T.
    Wang, Jason J.
    Bergman, Margo A.
    VALUE IN HEALTH, 2011, 14 (08) : 1085 - 1091
  • [8] A principal component method to impute missing values for mixed data
    Audigier, Vincent
    Husson, Francois
    Josse, Julie
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2016, 10 (01) : 5 - 26
  • [9] Missing covariate data in medical research: To impute is better than to ignore
    Janssen, Kristel J. M.
    Donders, A. Rogier T.
    Harrell, Frank E., Jr.
    Vergouwe, Yvonne
    Chen, Qingxia
    Grobbee, Diederick E.
    Moons, Karel G. M.
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2010, 63 (07) : 721 - 727
  • [10] How much missing data is too much to impute for longitudinal health indicators? A preliminary guideline for the choice of the extent of missing proportion to impute with multiple imputation by chained equations
    Junaid, K. P.
    Kiran, Tanvi
    Gupta, Madhu
    Kishore, Kamal
    Siwatch, Sujata
    POPULATION HEALTH METRICS, 2025, 23 (01):