A Functional Limit Theorem Related to Natural Divisors

被引:0
作者
E. Manstavičius
N. M. Timofeev
机构
[1] Vilnius University,
[2] Vladimir State Pedagogical University,undefined
来源
Acta Mathematica Hungarica | 1997年 / 75卷
关键词
Limit Theorem; Functional Limit; Functional Limit Theorem; Natural Divisor;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1 / 13
页数:12
相关论文
共 15 条
[1]  
Deshouillers J. M.(1979)Lois de répartition des diviseurs, 1 Acta Arithm. 34 7-19
[2]  
Dress F.(1979)On a result of R. R. Hall J. Number Theory 11 76-89
[3]  
Tenenbaum G.(1988)An invariance principle for additive arithmetic functions Soviet Math. Dokl. 37 259-263
[4]  
Halberstam H.(1995)Functional approach in the divisor distribution problems Acta Math. Hungar. 67 1-17
[5]  
Richert H.-E.(1996)Natural divisors and the Brownian motion Journal de Théorie des Nombres de Bordeaux 8 159-171
[6]  
Manstavičius E.(1980)Lois de répartition des diviseurs, 2 Acta Arithm. 38 1-36
[7]  
Manstavičius E.(1979)Lois de répartition des diviseurs, 4 Ann. Inst. Fourier 29 1-15
[8]  
Manstavičius E.(1979)Lois de répartition des diviseurs, 5 J. London Math. Soc. 20 165-176
[9]  
Tenenbaum G.(1984)On the arithmetical simulating of the processes with independent increments Dokl. Acad. Sc. TadzSSR 27 556-559
[10]  
Tenenbaum G.(1981)On some arithmetic models of random processes Dokl. Acad. Sc. TadzSSR 24 284-287