Spectra of Symmetric Self-similar Measures as Multipliers in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}

被引:0
作者
Yan-Song Fu
Meng Zhu
机构
[1] China University of Mining and Technology (Beijing),Department of Mathematics
[2] Sun Yat-Sen University,School of Mathematics
关键词
spectrum; Fourier transform; Self-similar measure; Convolution operator; Pisot number; Primary 42A38; 28A80; 47B38; 11R06;
D O I
10.1007/s12220-022-00958-4
中图分类号
学科分类号
摘要
Let μθ,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{\theta ,D}$$\end{document} be the self-similar measure on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}$$\end{document} satisfying that μθ,D:=1#D∑j∈Dμθ,D∘φj-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{\theta ,D}:=\frac{1}{\#D} \sum _{j \in D} \mu _{\theta ,D}\circ \varphi _j^{-1}$$\end{document}, where φj(x)=θ-1x+j,θ>1,j∈D⊆Z,D=-D,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _j(x)=\theta ^{-1}x+j, \ \theta >1, j\in D\subseteq {{\mathbb {Z}}}, D=-D,$$\end{document} and #D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\#D$$\end{document} denotes the cardinality of the set D. In this work, we will show that, under a mild condition, the closure {μθ,D^(rn):n∈Z}¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\{\widehat{\mu _{\theta ,D}}(rn):n \in {{\mathbb {Z}}}\}}$$\end{document} of the set of Fourier transforms {μθ,D^(rn):n∈Z}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\widehat{\mu _{\theta ,D}}(rn):n \in {{\mathbb {Z}}}\}$$\end{document} of the self-similar measure μθ,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{\theta ,D}$$\end{document} parameterized by a Pisot number θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} is countable for all positive r∈Q(θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in {{\mathbb {Q}}}(\theta )$$\end{document} but uncountable for Lebesgue-a.e. r>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r>0$$\end{document}. As an application, this, together with results of Sarnak [19] and Hu [8], proves that, for every fixed θ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta >1$$\end{document} and the digit set D which is either D=±{0,1,…,q}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=\pm \{0,1,\ldots ,q\}$$\end{document} or D=±{1,3,…,2q-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=\pm \{1,3,\ldots ,2q-1\}$$\end{document} where q∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in {{\mathbb {N}}}$$\end{document}, the spectrum of the convolution operator f↦μθ,D∗f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\mapsto \mu _{\theta ,D}*f$$\end{document} in Lp(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\mathbb {T})$$\end{document} (where T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document} is the circle group) is countable and is the same for all p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1,\infty )$$\end{document}, that is, {μθ,D^(n):n∈Z}¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\{\widehat{\mu _{\theta ,D}}(n):n \in {{\mathbb {Z}}}\}}$$\end{document}. This extends the corresponding results of Erdös [6], Salem [17], and Sidorov and Solomyak [21] for Bernoulli convolutions.
引用
收藏
相关论文
共 35 条
[11]  
Hutchinson JE(2020)Fourier transform of self-affine measures Adv. Math. 374 107349-110
[12]  
Igari S(2018)Absolute continuity of non-homogeneous self-similar measures Adv. Math. 335 60-108
[13]  
Li JL(1944)A remarkable class of algebraic integers. Proof of a conjecture of Vijayaraghavan Duke Math. J. 11 103-317
[14]  
Sahlsten T(1980)Spectra of singular measures as multipliers on $L^{p}$ J. Funct. Anal. 37 302-342
[15]  
Li JL(1985)Spectra of measures as $L^p$ multipliers Tohoku Math. J. 2 333-370
[16]  
Sahlsten T(2003)Spectra of Bernoulli convolutions as multipliers in $L^{p}$ on the circle Duke Math. J. 120 353-3291
[17]  
Saglietti S(2021)Fourier decay for self-similar measures Proc. Am. Math. Soc. 149 3277-958
[18]  
Shmerkin P(2014)On the exceptional set for absolute continuity of Bernoulli convolutions Geom. Funct. Anal. 24 946-5151
[19]  
Solomyak B(2016)Absolute continuity of self-similar measures, their projections and convolutions Trans. Am. Math. Soc. 368 5125-187
[20]  
Salem R(1990)Fourier asymptotics of fractal measures J. Funct. Anal. 89 154-817