Spectra of Symmetric Self-similar Measures as Multipliers in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}

被引:0
作者
Yan-Song Fu
Meng Zhu
机构
[1] China University of Mining and Technology (Beijing),Department of Mathematics
[2] Sun Yat-Sen University,School of Mathematics
关键词
spectrum; Fourier transform; Self-similar measure; Convolution operator; Pisot number; Primary 42A38; 28A80; 47B38; 11R06;
D O I
10.1007/s12220-022-00958-4
中图分类号
学科分类号
摘要
Let μθ,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{\theta ,D}$$\end{document} be the self-similar measure on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}$$\end{document} satisfying that μθ,D:=1#D∑j∈Dμθ,D∘φj-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{\theta ,D}:=\frac{1}{\#D} \sum _{j \in D} \mu _{\theta ,D}\circ \varphi _j^{-1}$$\end{document}, where φj(x)=θ-1x+j,θ>1,j∈D⊆Z,D=-D,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _j(x)=\theta ^{-1}x+j, \ \theta >1, j\in D\subseteq {{\mathbb {Z}}}, D=-D,$$\end{document} and #D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\#D$$\end{document} denotes the cardinality of the set D. In this work, we will show that, under a mild condition, the closure {μθ,D^(rn):n∈Z}¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\{\widehat{\mu _{\theta ,D}}(rn):n \in {{\mathbb {Z}}}\}}$$\end{document} of the set of Fourier transforms {μθ,D^(rn):n∈Z}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\widehat{\mu _{\theta ,D}}(rn):n \in {{\mathbb {Z}}}\}$$\end{document} of the self-similar measure μθ,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{\theta ,D}$$\end{document} parameterized by a Pisot number θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} is countable for all positive r∈Q(θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in {{\mathbb {Q}}}(\theta )$$\end{document} but uncountable for Lebesgue-a.e. r>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r>0$$\end{document}. As an application, this, together with results of Sarnak [19] and Hu [8], proves that, for every fixed θ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta >1$$\end{document} and the digit set D which is either D=±{0,1,…,q}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=\pm \{0,1,\ldots ,q\}$$\end{document} or D=±{1,3,…,2q-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=\pm \{1,3,\ldots ,2q-1\}$$\end{document} where q∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in {{\mathbb {N}}}$$\end{document}, the spectrum of the convolution operator f↦μθ,D∗f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\mapsto \mu _{\theta ,D}*f$$\end{document} in Lp(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\mathbb {T})$$\end{document} (where T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document} is the circle group) is countable and is the same for all p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1,\infty )$$\end{document}, that is, {μθ,D^(n):n∈Z}¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\{\widehat{\mu _{\theta ,D}}(n):n \in {{\mathbb {Z}}}\}}$$\end{document}. This extends the corresponding results of Erdös [6], Salem [17], and Sidorov and Solomyak [21] for Bernoulli convolutions.
引用
收藏
相关论文
共 35 条
[1]  
Brown G(1973)A dichotomy for infinite convolutions of discrete measures Proc. Camb. Philos. Soc. 73 307-316
[2]  
Moran W(2012)When does a Bernoulli convolution admit a spectrum? Adv. Math. 231 1681-1693
[3]  
Dai XR(2007)Refinable functions with non-integer dilations J. Funct. Anal. 250 1-20
[4]  
Dai XR(1939)On a family of symmetric Bernoulli convolutions Am. J. Math. 61 974-975
[5]  
Feng DJ(1960)Estimates for translations invariant operators in $L^p$ spaces Acta Math. 104 93-140
[6]  
Wang Y(2001)Asymptotic behavior of Fourier transforms of self-similar measures Proc. Am. Math. Soc. 129 1713-1720
[7]  
Erdös P(2012)A property of Pisot numbers and Fourier transforms of self-similar measures Sci. China Math. 55 1721-1733
[8]  
Hömander L(1981)Fractals and self-similarity J. Indiana Univ. Math. 30 713-747
[9]  
Hu TY(1969)Functions of $L^p$-multipliers Tohoku Math. J. 2 304-320
[10]  
Hu TY(2022)Trigonometric series and self-similar sets J. Eur. Math. Soc. 24 341-368