Isospin effects on intermediate mass fragments at intermediate energy-heavy ion collisions

被引:0
作者
Li Li
Fang-Yuan Wang
Ying-Xun Zhang
机构
[1] China Institute of Atomic Energy,Department of Physics and Technology
[2] Guangxi Normal University,undefined
来源
Nuclear Science and Techniques | 2022年 / 33卷
关键词
Symmetry energy; Intermediate mass fragments; Isospin effects;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we investigated the isospin properties of intermediate mass fragments (IMFs) for the central collisions of 112,124\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{112,124}$$\end{document}Sn+112,124\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{112,124}$$\end{document}Sn at a beam energy of 50 MeV per nucleon using an improved quantum molecular dynamics model (ImQMD) coupled with a sequential decay model (GEMINI). Three observables were analyzed: (1) the average center-of-mass kinetic energy per nucleon ⟨Ec.m./A⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle E_\text {c.m.}\big/A\rangle$$\end{document} of fragments as a function of their charge number Z; (2) the average neutron number to proton number ratio (⟨N⟩/Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle N\rangle \big/Z$$\end{document}) of fragments with a given charge number Z as a function of their center-of-mass kinetic energy per nucleon (Ec.m./A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\text {c.m.}\big/A$$\end{document}); and (3) the average total neutron number to total proton number ratio (∑N/∑Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum N\big/\sum Z$$\end{document}) and double ratio (DR(N/Z)) of IMFs with Z = 3–8 as a function of their center-of-mass kinetic energy per nucleon Ec.m./A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\text {c.m.}\big/A$$\end{document}. Our calculations revealed that the sensitivity of the isospin properties of IMFs relative to the stiffness of the symmetry energy remains even after sequential decay. By comparing the calculations of ∑N/∑Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum N\big/\sum Z$$\end{document} and DR(N/Z) with the data, it was found that the soft symmetry energy, i.e., γ=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =0.5$$\end{document}, is favored.
引用
收藏
相关论文
共 175 条
[1]  
Li B-A(2008)Recent progress and new challenges in isospin physics with heavy-ion reactions Phys. Rep. 464 113-190
[2]  
Chen L-W(2012)Constraints on the symmetry energy and neutron skins from experiments and theory Phys. Rev. C 685 368c-undefined
[3]  
Ko CM(2001)Flow and the equation of state of nuclear matter Nucl. Phys. A 639 436-undefined
[4]  
Tsang MB(2005)High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter Phys. Rev. Lett. 77 4508-undefined
[5]  
Stone JR(2009)Constraints on the density dependence of the symmetry energy Phys. Rev. Lett. 95 041602(R)-undefined
[6]  
Camera F(2008)Isospin distillation with radial flow: A test of the nuclear symmetry energy Phys. Rev. C 29 40-undefined
[7]  
Danielewicz P(2006)System dependence of the correlation function of IMFs in Ar +Sn at 35 MeV/u Phys. Lett. B 31 61-undefined
[8]  
Chen L-W(1996)Investigating the evolution of multifragmenting systems with fragment emission order Phys. Rev. Lett. 32 117-undefined
[9]  
Ko CM(2009)Isospin diffusion in Ni-induced reactions at intermediate energies Rev. C 769 424-undefined
[10]  
Li B-A(2007)Isospin diffusion observables in heavy-ion reactions Phys. Rev. C 38 04210-undefined