The Rigidity of Hypersurfaces in Euclidean Space

被引:0
作者
Chunhe Li
Yanyan Xu
机构
[1] University of Electronic Science and Technology of China,School of Mathematical Sciences
来源
Chinese Annals of Mathematics, Series B | 2019年 / 40卷
关键词
Global rigidity; Infinitesimal rigidity; Energy method; Maximal principle; 53C24; 53C45;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, the rigidity of hypersurfaces in Euclidean space is revisited. The Darboux equation is highlighted and two new proofs of the rigidity are given via energy method and maximal principle, respectively.
引用
收藏
页码:439 / 456
页数:17
相关论文
共 13 条
  • [1] Alexandrov A D(1938)On a class of closed surfaces Mat. Sb. 4 69-77
  • [2] Cohn-Vossen E(1930)Unstarre geochlossene Flachen Math. Annalen 102 10-29
  • [3] Dajczer M(1990)Infinitesimal rigidity of Euclidean submanifolds Ann. Inst. Four. 40 939-949
  • [4] Rodriguez L L(1993)The semi-global isometric imbedding in J. Partial Diff. Eqs. 1 62-79
  • [5] Dong G C(2015) of two dimensional Riemannian manifolds with Gaussian curvature changing sign clearly Contemporary Mathematics 644 61-65
  • [6] Guan P(2016)A rigidity theorem for hypersurfaces in higher dimensional space forms Annales de l’Institut Henri Poincaré Analyse non linéaire 33 329-336
  • [7] Shen X(2014)A proof of the Alexanderov’s uniqueness theorem for convex surface in ℝ Canadian Journal of Mathematics 66 783-825
  • [8] Guan P(2015)Infinitesimal rigidity of convex polyhedra through the second derivative of the Hilbert-Einstein functional Int. Math. Res. Notices 16 7130-7161
  • [9] Wang Z(undefined)On isometric embeddings into anti-de sitter spacetimes undefined undefined undefined-undefined
  • [10] Zhang X(undefined)undefined undefined undefined undefined-undefined