Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform

被引:0
|
作者
Alexander Sturm
Grzegorz Jóźwiak
Marta Pla Verge
Laura Munch
Gino Cathomen
Anthony Vocat
Amanda Luraschi-Eggemann
Clara Orlando
Katja Fromm
Eric Delarze
Michał Świątkowski
Grzegorz Wielgoszewski
Roxana M. Totu
María García-Castillo
Alexandre Delfino
Florian Tagini
Sandor Kasas
Cornelia Lass-Flörl
Ronald Gstir
Rafael Cantón
Gilbert Greub
Danuta Cichocka
机构
[1] Resistell AG,Hospital Universitario Ramón y Cajal
[2] Hofackerstrasse 40,Institute of Microbiology
[3] Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS),Laboratory of Biological Electron Microscopy (LBEM)
[4] Carretera de Colmenar Km 9,Institut für Hygiene und Medizinische Mikrobiologie
[5] 1,undefined
[6] Lausanne University Hospital (CHUV) & University of Lausanne (UNIL),undefined
[7] École Polytechnique Fédérale de Lausanne (EPFL) and University of Lausanne (UNIL),undefined
[8] Centre Universitaire Romand de Médecine Légale (UFAM) & Université de Lausanne (UNIL),undefined
[9] Medizinische Universität Innsbruck,undefined
[10] Schöpfstraße 41,undefined
[11] CIBER de Enfermedades Infecciosas (CIBERINFEC). Instituto de Salud Carlos III. Sinesio Delgado 4,undefined
来源
Nature Communications | / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Antimicrobial resistance (AMR) is a major public health threat, reducing treatment options for infected patients. AMR is promoted by a lack of access to rapid antibiotic susceptibility tests (ASTs). Accelerated ASTs can identify effective antibiotics for treatment in a timely and informed manner. We describe a rapid growth-independent phenotypic AST that uses a nanomotion technology platform to measure bacterial vibrations. Machine learning techniques are applied to analyze a large dataset encompassing 2762 individual nanomotion recordings from 1180 spiked positive blood culture samples covering 364 Escherichia coli and Klebsiella pneumoniae isolates exposed to cephalosporins and fluoroquinolones. The training performances of the different classification models achieve between 90.5 and 100% accuracy. Independent testing of the AST on 223 strains, including in clinical setting, correctly predict susceptibility and resistance with accuracies between 89.5% and 98.9%. The study shows the potential of this nanomotion platform for future bacterial phenotype delineation.
引用
收藏
相关论文
共 50 条
  • [1] Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform
    Sturm, Alexander
    Jozwiak, Grzegorz
    Verge, Marta Pla
    Munch, Laura
    Cathomen, Gino
    Vocat, Anthony
    Luraschi-Eggemann, Amanda
    Orlando, Clara
    Fromm, Katja
    Delarze, Eric
    Swiatkowski, Michal
    Wielgoszewski, Grzegorz
    Totu, Roxana M.
    Garcia-Castillo, Maria
    Delfino, Alexandre
    Tagini, Florian
    Kasas, Sandor
    Lass-Florl, Cornelia
    Gstir, Ronald
    Canton, Rafael
    Greub, Gilbert
    Cichocka, Danuta
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [2] Nanomotion technology in combination with machine learning: a new approach for a rapid antibiotic susceptibility test for Mycobacterium tuberculosis
    Vocat, Anthony
    Sturm, Alexander
    Jozwiak, Grzegorz
    Cathomen, Gino
    Swiatkowski, Michal
    Buga, Roxana
    Wielgoszewski, Grzegorz
    Cichocka, Danuta
    Greub, Gilbert
    Opota, Onya
    MICROBES AND INFECTION, 2023, 25 (07)
  • [3] Nanomotion Detection-Based Rapid Antibiotic Susceptibility Testing
    Kasas, Sandor
    Malovichko, Anton
    Villalba, Maria Ines
    Vela, Maria Elena
    Yantorno, Osvaldo
    Willaert, Ronnie G.
    ANTIBIOTICS-BASEL, 2021, 10 (03): : 1 - 16
  • [4] Machine Learning-Assisted Performance Testing
    Moghadam, Mahshid Helali
    ESEC/FSE'2019: PROCEEDINGS OF THE 2019 27TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, 2019, : 1187 - 1189
  • [5] Rapid Antibiotic Susceptibility Analysis Using Microscopy and Machine Learning
    Pyayt, Anna
    Khan, Rituparna
    Brzozowski, Robert
    Eswara, Prahathees
    Gubanov, Michael
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5804 - 5806
  • [6] A multiplexed microfluidic platform for rapid antibiotic susceptibility testing
    Mohan, Ritika
    Mukherjee, Arnab
    Sevgen, Selami E.
    Sanpitakseree, Chotitath
    Lee, Jaebum
    Schroeder, Charles M.
    Kenis, Paul J. A.
    BIOSENSORS & BIOELECTRONICS, 2013, 49 : 118 - 125
  • [7] A simplified version of rapid susceptibility testing of bacteria and yeasts using optical nanomotion detection
    Villalba, Maria I.
    Gligorovski, Vojislav
    Rahi, Sahand J.
    Willaert, Ronnie G.
    Kasas, Sandor
    FRONTIERS IN MICROBIOLOGY, 2024, 15
  • [8] Machine learning-assisted rapid determination for traditional Chinese Medicine Constitution
    Sun, Wen
    Bai, Minghua
    Wang, Ji
    Wang, Bei
    Liu, Yixing
    Wang, Qi
    Han, Dongran
    CHINESE MEDICINE, 2024, 19 (01):
  • [9] A Quantitative, Multiplexed RNA Detection Platform for Rapid Pathogen Identification and Phenotypic Antibiotic Susceptibility Testing (AST) using NanoString Technology
    Bhattacharyya, R. P.
    Khafizov, R.
    Boykin, R.
    Dunaway, D.
    Wu, L.
    Liu, C. J.
    Son, S. S.
    Bandyopadhyay, N.
    Walker, M.
    Shoresh, N.
    Livny, J.
    Beechem, J.
    Hung, D. T.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2018, 20 (06): : 954 - 954
  • [10] Machine Learning-Assisted Device Modeling With Process Variations for Advanced Technology
    Lyu, Yaoyang
    Chen, Wangyong
    Zheng, Mingyue
    Yin, Binyu
    Li, Jinning
    Cai, Linlin
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2023, 11 : 303 - 310