Global cooling induced by biophysical effects of bioenergy crop cultivation

被引:0
|
作者
Jingmeng Wang
Wei Li
Philippe Ciais
Laurent Z. X. Li
Jinfeng Chang
Daniel Goll
Thomas Gasser
Xiaomeng Huang
Narayanappa Devaraju
Olivier Boucher
机构
[1] Tsinghua University,Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies
[2] Tsinghua University,Institute for Carbon Neutrality
[3] Université Paris-Saclay,Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA
[4] Sorbonne Université,CNRS
[5] Ecole Normale Supérieure,UVSQ
[6] Ecole Polytechnique,Laboratoire de Météorologie Dynamique, Centre National de la Recherche Scientifique
[7] Zhejiang University,College of Environmental and Resource Sciences
[8] Université Paris Saclay,Institut Pierre
[9] CEA-CNRS-UVSQ,Simon Laplace
[10] LSCE/IPSL,undefined
[11] International Institute for Applied Systems Analysis (IIASA),undefined
[12] Sorbonne Université/IPSL,undefined
来源
Nature Communications | / 12卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Bioenergy crop with carbon capture and storage (BECCS) is a key negative emission technology to meet carbon neutrality. However, the biophysical effects of widespread bioenergy crop cultivation on temperature remain unclear. Here, using a coupled atmosphere-land model with an explicit representation of lignocellulosic bioenergy crops, we find that after 50 years of large-scale bioenergy crop cultivation following plausible scenarios, global air temperature decreases by 0.03~0.08 °C, with strong regional contrasts and interannual variability. Over the cultivated regions, woody crops induce stronger cooling effects than herbaceous crops due to larger evapotranspiration rates and smaller aerodynamic resistance. At the continental scale, air temperature changes are not linearly proportional to the cultivation area. Sensitivity tests show that the temperature change is robust for eucalypt but more uncertain for switchgrass among different cultivation maps. Our study calls for new metrics to take the biophysical effects into account when assessing the climate mitigation capacity of BECCS.
引用
收藏
相关论文
共 50 条
  • [1] Global cooling induced by biophysical effects of bioenergy crop cultivation
    Wang, Jingmeng
    Li, Wei
    Ciais, Philippe
    Li, Laurent Z. X.
    Chang, Jinfeng
    Goll, Daniel
    Gasser, Thomas
    Huang, Xiaomeng
    Devaraju, Narayanappa
    Boucher, Olivier
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [2] Temperature Changes Induced by Biogeochemical and Biophysical Effects of Bioenergy Crop Cultivation
    Wang, Jingmeng
    Ciais, Philippe
    Gasser, Thomas
    Chang, Jinfeng
    Tian, Hanqin
    Zhao, Zhe
    Zhu, Lei
    Li, Zhao
    Li, Wei
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (06) : 2474 - 2483
  • [3] ECONOMIC AND BIOENERGY ASSESSMENT OF CROP CULTIVATION TECHNOLOGIES
    Tkachenko, Vasiliy
    Popova, Elena
    Tkachenko, Natalia
    INTERNATIONAL TRANSACTION JOURNAL OF ENGINEERING MANAGEMENT & APPLIED SCIENCES & TECHNOLOGIES, 2020, 11 (13):
  • [4] Effects of cultivation period on catch crop chemical composition and potential for bioenergy production
    Akao, S.
    Yasutake, D.
    Kondo, K.
    Nagare, H.
    Maeda, M.
    Fujiwara, T.
    INDUSTRIAL CROPS AND PRODUCTS, 2018, 111 : 787 - 793
  • [5] Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil
    Lind, Saara E.
    Shurpali, Narasinha J.
    Peltola, Olli
    Mammarella, Ivan
    Hyvonen, Niina
    Maljanen, Marja
    Raty, Mari
    Virkajarvi, Perttu
    Martikainen, Pertti J.
    BIOGEOSCIENCES, 2016, 13 (04) : 1255 - 1268
  • [6] Assessing wild bees in perennial bioenergy landscapes: effects of bioenergy crop composition, landscape configuration, and bioenergy crop area
    Graham, John B.
    Nassauer, Joan I.
    Currie, William S.
    Ssegane, Herbert
    Negri, M. Cristina
    LANDSCAPE ECOLOGY, 2017, 32 (05) : 1023 - 1037
  • [7] Assessing wild bees in perennial bioenergy landscapes: effects of bioenergy crop composition, landscape configuration, and bioenergy crop area
    John B. Graham
    Joan I. Nassauer
    William S. Currie
    Herbert Ssegane
    M. Cristina Negri
    Landscape Ecology, 2017, 32 : 1023 - 1037
  • [8] Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators
    Krause, Andreas
    Pugh, Thomas A. M.
    Bayer, Anita D.
    Doelman, Jonathan C.
    Humpenoeder, Florian
    Anthoni, Peter
    Olin, Stefan
    Bodirsky, Benjamin L.
    Popp, Alexander
    Stehfest, Elke
    Arneth, Almut
    BIOGEOSCIENCES, 2017, 14 (21) : 4829 - 4850
  • [9] Environmental effects of energy crop cultivation
    Börjesson, P
    BIOMASS FOR ENERGY AND INDUSTRY, 1998, : 1239 - 1242
  • [10] Realizing the Potential of Camelina sativa as a Bioenergy Crop for a Changing Global Climate
    Neupane, Dhurba
    Lohaus, Richard H.
    Solomon, Juan K. Q.
    Cushman, John C.
    PLANTS-BASEL, 2022, 11 (06):