A new threshold regression model for survival data with a cure fraction

被引:0
|
作者
Sungduk Kim
Ming-Hui Chen
Dipak K. Dey
机构
[1] Eunice Kennedy Shriver National Institute of Child Health and Human Development,Division of Epidemiology, Statistics and Prevention Research
[2] NIH,Department of Statistics
[3] University of Connecticut,undefined
来源
Lifetime Data Analysis | 2011年 / 17卷
关键词
Cure rate models; DIC; Latent variables; LPML; Markov chain Monte Carlo; Posterior distribution; Prostate cancer;
D O I
暂无
中图分类号
学科分类号
摘要
Due to the fact that certain fraction of the population suffering a particular type of disease get cured because of advanced medical treatment and health care system, we develop a general class of models to incorporate a cure fraction by introducing the latent number N of metastatic-competent tumor cells or infected cells caused by bacteria or viral infection and the latent antibody level R of immune system. Various properties of the proposed models are carefully examined and a Markov chain Monte Carlo sampling algorithm is developed for carrying out Bayesian computation for model fitting and comparison. A real data set from a prostate cancer clinical trial is analyzed in detail to demonstrate the proposed methodology.
引用
收藏
页码:101 / 122
页数:21
相关论文
共 50 条
  • [41] A Bayesian destructive weighted Poisson cure rate model and an application to a cutaneous melanoma data
    Rodrigues, Josemar
    Cancho, Vicente G.
    de Castro, Mario
    Balakrishnan, N.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2012, 21 (06) : 585 - 597
  • [42] Bayesian Model Assessment in Joint Modeling of Longitudinal and Survival Data With Applications to Cancer Clinical Trials
    Zhang, Danjie
    Chen, Ming-Hui
    Ibrahim, Joseph G.
    Boye, Mark E.
    Shen, Wei
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (01) : 121 - 133
  • [43] Weighted Lindley Shared Regression Model for Bivariate Left Censored Data
    Tyagi, Shikhar
    Pandey, Arvind
    Chesneau, Christophe
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2022, 84 (02): : 655 - 682
  • [44] A Logistic Normal Multinomial Regression Model for Microbiome Compositional Data Analysis
    Xia, Fan
    Chen, Jun
    Fung, Wing Kam
    Li, Hongzhe
    BIOMETRICS, 2013, 69 (04) : 1053 - 1063
  • [45] Weighted Lindley Shared Regression Model for Bivariate Left Censored Data
    Shikhar Tyagi
    Arvind Pandey
    Christophe Chesneau
    Sankhya B, 2022, 84 : 655 - 682
  • [46] A Bayesian regression model for circular data based on the projected normal distribution
    Nunez-Antonio, Gabriel
    Gutierrez-Pena, Eduardo
    Escarela, Gabriel
    STATISTICAL MODELLING, 2011, 11 (03) : 185 - 201
  • [47] A Bayesian latent process spatiotemporal regression model for areal count data
    Utazi, C. Edson
    Afuecheta, Emmanuel O.
    Nnanatu, C. Christopher
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2018, 25 : 25 - 37
  • [48] Comparison of Bayesian survival analysis and Cox regression analysis in simulated and breast cancer data sets
    Omurlu, Imran Kurt
    Ozdamar, Kazim
    Ture, Mevlut
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (08) : 11341 - 11346
  • [49] Model Evaluation and Multiple Strategies in Cognitive Diagnosis: An Analysis of Fraction Subtraction Data
    de la Torre, Jimmy
    Douglas, Jeffrey A.
    PSYCHOMETRIKA, 2008, 73 (04) : 595 - 624
  • [50] Model Evaluation and Multiple Strategies in Cognitive Diagnosis: An Analysis of Fraction Subtraction Data
    Jimmy de la Torre
    Jeffrey A. Douglas
    Psychometrika, 2008, 73 : 595 - 624