共 30 条
[21]
On the positive nonoscillatory solutions of the difference equation xn+1 = α + \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\left( {\tfrac{{x_{n - k} }}
{{x_{n - m} }}} \right)
$$\end{document}p
[J].
Applied Mathematics-A Journal of Chinese Universities,
2009, 24 (1)
[22]
On the difference equation\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$x_{n + 1} = \frac{{a + bx_{n - k} - cx_{n - m} }}{{1 + g(x_{n - 1} )}}$$
\end{document}
[J].
Journal of Applied Mathematics and Computing,
2007, 25 (1-2)
:201-216
[23]
On boundedness of solutions of the difference equation \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$x_{n+1}=p+\frac{x_{n-1}}{x_{n}}$\end{document} for p<1
[J].
Journal of Applied Mathematics and Computing,
2014, 44 (1-2)
:61-68
[24]
On the recursive sequence\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$x_{n + 1} = \frac{{ax_{n - 2m + 1}^p }}{{b + cx_{n - 2k}^{p - 1} }}$$
\end{document}
[J].
Journal of Applied Mathematics and Computing,
2006, 21 (1-2)
:223-232
[25]
Dynamics of difference equation xn+1=f(xn−l,xn−k)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$x_{n+1}=f( x_{n-l},x_{n-k})$\end{document}
[J].
Advances in Difference Equations,
2018 (1)
[26]
Global asymptotic stability of the higher order equation xn+1=axn+bxn-kA+Bxn-k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x_{n+1} = \frac{ ax_{n}+bx_{n-k}}{A+Bx_{n-k}}$$\end{document}
[J].
Journal of Applied Mathematics and Computing,
2017, 55
:135-148
[27]
On the difference equation xn+1=axn−l+bxn−k+f(xn−l,xn−k)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$x_{n+1}=ax_{n-l}+bx_{n-k}+f ( x_{n-l},x_{n-k} )$\end{document}
[J].
Advances in Difference Equations,
2018 (1)
[28]
On the Recursive Sequence xn+1=xn−k+11+xnxn−1…xn−k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {x}_{n+1}=\frac{x_{n-\left(k+1\right)}}{1+{x}_n{x}_{n-1}\dots {x}_{n-k}} $$\end{document}
[J].
Journal of Mathematical Sciences,
2018, 234 (1)
:73-81
[29]
On the recursive sequence xn+1=xn−4k+31+∏t=02xn−k+1t−k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {x}_{n+1}=\frac{x_{n-\left(4k+3\right)}}{1+\prod_{t=0}^2{x}_{n-\left(k+1\right)t-k}} $$\end{document}
[J].
Journal of Mathematical Sciences,
2017, 222 (6)
:762-771
[30]
Dynamical behavior of rational difference equation xn+1=xn-17±1±xn-2xn-5xn-8xn-11xn-14xn-17\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x_{n+1}=\frac{x_{n-17}}{\pm 1\pm x_{n-2}x_{n-5}x_{n-8}x_{n-11}x_{n-14}x_{n-17}}$$\end{document}
[J].
Boletín de la Sociedad Matemática Mexicana,
2021, 27 (2)