Inverse Problems with Pointwise Overdetermination for some Quasilinear Parabolic Systems

被引:0
作者
Pyatkov S.G. [1 ,2 ]
Rotko V.V. [1 ]
机构
[1] Yugra State University, Khanty-Mansiisk
[2] Sobolev Institute of Mathematics, Novosibirsk
基金
俄罗斯基础研究基金会;
关键词
convection-diffusion; heat-and-mass transfer; inverse problem; parabolic system; source function;
D O I
10.3103/S1055134420020054
中图分类号
学科分类号
摘要
Abstract: In the article, we examine well-posedness questions in the Sobolev spaces of the inversesource problem in the case of a quasilinear parabolic system of the second order. The main part ofthe operator is linear. The overdetermination conditions are values of a solution at some collectionof interior points. It is demonstrated that, in the case of at most linear growth of the nonlinearity,there exists a unique global (in time) solution and the problem is well-posed in the Sobolevclasses. The conditions on the data are minimal and the results are sharp. © 2020, Allerton Press, Inc.
引用
收藏
页码:124 / 142
页数:18
相关论文
共 32 条
  • [1] Afinogenova O.A., Belov Y.Y., Frolenkov I.V., Stabilization of the solution to the identification problem of the source function for a one-dimensional parabolic equation, Dokl. Math., 79, (2009)
  • [2] Alifanov O.M., Inverse Heat Transfer Problems, (1994)
  • [3] Alifanov O.M., Artyukhov E.A., Nenarokomov A.V., Inverse Compound Heat Transfer Problems, (2009)
  • [4] Amann H., Linear and Quasilinear Parabolic Problems. I, (1995)
  • [5] Amann H., Operator-Valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr., 186, (1997)
  • [6] Amann H., Compact embeddings of vector-valued Sobolev and Besov spaces, Glasnik Mat. Ser. III, 35, 55, (2000)
  • [7] El B.A., Hamdi A., Inverse source problem in an advection-dispersion-reaction system: Application to water pollution, Inverse, Problems 23, (2007)
  • [8] El B.A., Ha-Duong T., Inverse source problem for the heat equation: Application to a pollution detection problem, J. Inverse Ill-Posed Probl., 10, (2002)
  • [9] Belov Y.Y., Korshun K.V.J., Of Siberian Federal University. Mathematics, Physics, 5, (2012)
  • [10] Denk R., Hieber M., Pruss J., Optimal L<sub>P</sub>-L<sub>P</sub>-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257, (2007)