The Second Stiefel-Whitney Class of Small Covers

被引:0
作者
Zhangmin Huang
机构
[1] Fudan University,School of Mathematical Sciences
来源
Chinese Annals of Mathematics, Series B | 2020年 / 41卷
关键词
Small cover; Spin structure; Simple polytope; 57R19; 57R20; 52B11;
D O I
暂无
中图分类号
学科分类号
摘要
Let π: Mn → Pn be an n-dimensional small cover over Pn and λ: ℱ(Pn) → ℤ2n be its characteristic function. The author uses the symbol c(λ) to denote the cardinal number of the image Im(λ). If c(λ) = n + 1 or n + 2, then a necessary and sufficient condition on the existence of spin structure on Mn is given. As a byproduct, under some special conditions, the author uses the second Stiefel-Whitney class to detect when Pn is n-colorable or (n + 1)-colorable.
引用
收藏
页码:163 / 176
页数:13
相关论文
共 18 条
  • [1] Ayzenberg A(2011)Relation between the Buchstaber invariant and generalized chromatic numbers Dalarnevost. Mat. Zh. 11 113-139
  • [2] Borel A(1958)Characterisic classes and homogeneous spaces I Amer. J. Math. 80 458-538
  • [3] Hirzebruch F(1991)Convex polytopes, Coxeter orbifolds and torus actions Duke. Math. J. 61 417-451
  • [4] Davis M(2008)Buchstaber invariant of simple polytopes Russian. Math. Surveys. 63 962-964
  • [5] Januszkiewicz T(2002)Projectivities in simplicial complexes and colorings of simple polytopes Math. Z. 240 243-259
  • [6] Erokhovets N(2009)2-torus manifolds, cobordism and small covers Pacific Journal of Mathematics 241 285-308
  • [7] Joswig M(2009)Equivariant classification of 2-torus manifolds Colloq. Math. 115 171-188
  • [8] Lü Z(2014)Small covers and the equivariant bordism classification of 2-torus manifolds Int. Math. Res. Not. 24 6756-6797
  • [9] Lü Z(2011)Topological types of 3-dimensional small covers Forum. Math. 23 245-284
  • [10] Masuda M(2005)The orientability of small covers and coloring simple polytopes Osaka. J. Math. 42 243-256