Existence of positive solutions for a class of quasilinear elliptic problems with exponential growth via the Nehari manifold method

被引:0
作者
Giovany M. Figueiredo
Fernando Bruno M. Nunes
机构
[1] Universidade de Brasília,Departamento de Matemática
[2] Universidade Estadual do Amapá - UEAP,Departamento de Engenharia Ambiental
来源
Revista Matemática Complutense | 2019年 / 32卷
关键词
p-N Laplacian; Critical exponential growth; Trudinger-Moser inequality; Primary 35J60; Secondary 35C20; 35B33; 49J45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we will be concerned with the problem -div(a(|∇u|p)|∇u|p-2∇u)=f(u)inΩ,u=0on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\,\text{ div }(a(|\nabla u|^{p})|\nabla u|^{p-2}\nabla u)= f(u) \ \text{ in } \ \Omega , \ \ u=0 \ \text{ on } \ \ \partial \Omega , \end{aligned}$$\end{document}where Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^{N}$$\end{document} is bounded, 1<p<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1{<}p{<}N$$\end{document}, f:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {R}\rightarrow \mathbb {R}$$\end{document} is a superlinear continuous function with exponential subcritical or exponential critical growth and the function a is C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1}$$\end{document}. We use as a main tool the Nehari manifold method and our results include a large class of problems.
引用
收藏
页码:1 / 18
页数:17
相关论文
共 70 条
  • [1] Alves CO(2009)On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in J. Differ. Equ. 246 1288-1311
  • [2] Figueiredo GM(2013)Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains Z. Angew. Math. Phys. 65 1153-1062
  • [3] Alves CO(2011)Indefinite quasilinear elliptic equations in exterior domains with exponential critical growth Differ. Integral Equ. 24 1047-107
  • [4] Souto MAS(2015)Existence result for a class of quasilinear elliptic equations with Ill. J. Math. 59 545575-530
  • [5] Alves CO(2015)-Laplacian and vanishing potentials Electron. J. Qual. Theory Differ. Equ. 2 12-1233
  • [6] Freitas LR(2016)Three nontrivial solutions for some elliptic equation involving the Appl. Math. Lett. 61 102-468
  • [7] Soares SHM(2014)-Laplacian Adv. Nonlinear Stud. 14 511-41
  • [8] Alves MJ(2015)Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence J. Math. Appl. Anal. 427 1205-18
  • [9] Assunção RB(2015)Existence of a least energy nodal solution for a class of p&q-quasilinear elliptic equations Nonlinear Anal. 119 457-141
  • [10] Miyagaki OH(2016)Existence of least energy positive, negative and nodal solutions for a class of p&q-problems with potentials vanishing at infinity J. Math. Anal. Appl. 438 29-1748