Convexity of 2-Convex Translating Solitons to the Mean Curvature Flow in Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {\varvec{{\mathbb {R}}}}^{n+1}$$\end{document}

被引:0
作者
Joel Spruck
Liming Sun
机构
[1] Johns Hopkins University,Department of Mathematics
关键词
Mean curvature flow; Entire translating soliton; Uniform 2-convexity; Bowl soliton; Convexity; Fully nonlinear elliptic; Primary 53C44; 53C21; Secondary 53C42; 35J60;
D O I
10.1007/s12220-020-00427-w
中图分类号
学科分类号
摘要
We prove that any complete immersed globally orientable uniformly 2-convex translating soliton Σ⊂Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \subset {\mathbb {R}}^{n+1}$$\end{document} for the mean curvature flow is locally strictly convex. It follows that a uniformly 2-convex entire graphical translating soliton in Rn+1,n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n+1},\, n\ge 3 $$\end{document} is the axisymmetric “bowl soliton.”
引用
收藏
页码:4074 / 4091
页数:17
相关论文
共 38 条
[33]   On nonlinear convolution-type integral equations in the theory of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-adic strings [J].
A. Kh. Khachatryan ;
Kh. A. Khachatryan ;
H. S. Petrosyan .
Theoretical and Mathematical Physics, 2023, 216 (1) :1068-1081
[34]   An Exact l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document} Penalty Approach for Interval-Valued Programming Problem [J].
Anurag Jayswal ;
Jonaki Banerjee .
Journal of the Operations Research Society of China, 2016, 4 (4) :461-481
[35]   Duality for nondifferentiable minimax fractional programming problem involving higher order (C,α,ρ,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varvec{C},\varvec{\alpha}, \varvec{\rho}, \varvec{d})$$\end{document}-convexity [J].
Anurag Jayswal ;
Vivek Singh ;
Krishna Kummari .
OPSEARCH, 2017, 54 (3) :598-617
[36]   Inequalities for Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Norms that Sharpen the Triangle Inequality and Complement Hanner’s Inequality [J].
Eric A. Carlen ;
Rupert L. Frank ;
Paata Ivanisvili ;
Elliott H. Lieb .
The Journal of Geometric Analysis, 2021, 31 (4) :4051-4073
[38]   Rotators-translators to mean curvature flow in H2×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}^2\times \mathbb {R}$$\end{document}Rotators-translators to mean curvature flowR.F. de. Lima et al. [J].
R. F. de Lima ;
A. K. Ramos ;
J. P. dos Santos .
Archiv der Mathematik, 2025, 124 (3) :343-353