Convexity of 2-Convex Translating Solitons to the Mean Curvature Flow in Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {\varvec{{\mathbb {R}}}}^{n+1}$$\end{document}

被引:0
作者
Joel Spruck
Liming Sun
机构
[1] Johns Hopkins University,Department of Mathematics
关键词
Mean curvature flow; Entire translating soliton; Uniform 2-convexity; Bowl soliton; Convexity; Fully nonlinear elliptic; Primary 53C44; 53C21; Secondary 53C42; 35J60;
D O I
10.1007/s12220-020-00427-w
中图分类号
学科分类号
摘要
We prove that any complete immersed globally orientable uniformly 2-convex translating soliton Σ⊂Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \subset {\mathbb {R}}^{n+1}$$\end{document} for the mean curvature flow is locally strictly convex. It follows that a uniformly 2-convex entire graphical translating soliton in Rn+1,n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n+1},\, n\ge 3 $$\end{document} is the axisymmetric “bowl soliton.”
引用
收藏
页码:4074 / 4091
页数:17
相关论文
共 38 条
[26]   p,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( p,q\right) $$\end{document}-Hermite–Hadamard inequalities and p,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( p,q\right) $$\end{document}-estimates for midpoint type inequalities via convex and quasi-convex functions [J].
Mehmet Kunt ;
İmdat İşcan ;
Necmettin Alp ;
Mehmet Zeki Sarıkaya .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 (4) :969-992
[27]   Convexity and the Shapley value of Bertrand oligopoly TU-games in β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-characteristic function formConvexity and the Shapley value of Bertrand oligopoly TU-games in β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}...D. Hou et al. [J].
Dongshuang Hou ;
Aymeric Lardon ;
Theo Driessen .
Theory and Decision, 2025, 98 (4) :519-536
[28]   Complete Lagrangian self-shrinkers in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {R}}^4$$\end{document} [J].
Qing-Ming Cheng ;
Hiroaki Hori ;
Guoxin Wei .
Mathematische Zeitschrift, 2022, 301 (4) :3417-3468
[29]   2-Dimensional complete self-shrinkers in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {R}^3$$\end{document} [J].
Qing-Ming Cheng ;
Shiho Ogata .
Mathematische Zeitschrift, 2016, 284 :537-542
[30]   Approximately two-dimensional harmonic (p1,h1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p_{1},h_{1})$\end{document}-(p2,h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p_{2},h_{2})$\end{document}-convex functions and related integral inequalities [J].
Saad Ihsan Butt ;
Artion Kashuri ;
Muhammad Nadeem ;
Adnan Aslam ;
Wei Gao .
Journal of Inequalities and Applications, 2020 (1)