Convexity of 2-Convex Translating Solitons to the Mean Curvature Flow in Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {\varvec{{\mathbb {R}}}}^{n+1}$$\end{document}

被引:0
作者
Joel Spruck
Liming Sun
机构
[1] Johns Hopkins University,Department of Mathematics
关键词
Mean curvature flow; Entire translating soliton; Uniform 2-convexity; Bowl soliton; Convexity; Fully nonlinear elliptic; Primary 53C44; 53C21; Secondary 53C42; 35J60;
D O I
10.1007/s12220-020-00427-w
中图分类号
学科分类号
摘要
We prove that any complete immersed globally orientable uniformly 2-convex translating soliton Σ⊂Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \subset {\mathbb {R}}^{n+1}$$\end{document} for the mean curvature flow is locally strictly convex. It follows that a uniformly 2-convex entire graphical translating soliton in Rn+1,n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n+1},\, n\ge 3 $$\end{document} is the axisymmetric “bowl soliton.”
引用
收藏
页码:4074 / 4091
页数:17
相关论文
共 31 条
[1]  
Aarons MAS(2006)Mean curvature flow with a forcing term in minkowski space Cal. Var. Part. Differ. Equ. 25 205-246
[2]  
Altschuler SJ(1994)Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle Cal. Var. Part. Differ. Equ. 2 101-111
[3]  
Wu LF(1994)Contraction of convex hypersurfaces in euclidean space Cal. Var. Part. Differ. Equ. 2 151-171
[4]  
Andrews B(2016)Type-ii singularities of two-convex immersed mean curvature flow Geom. Flows 2 1-17
[5]  
Bourni T(2019)Uniqueness of convex ancient solutions to mean curvature flow in Invent. Math. 217 35-76
[6]  
Langford M(2007)Stability of translating solutions to mean curvature flow Cal. Var. Part. Differ. Equ. 29 281-293
[7]  
Brendle S(1994)Convex hypersurfaces with pinched second fundamental form Commun. Anal. Geom. 2 167-172
[8]  
Choi K(2015)Uniqueness of the bowl soliton Geom. Topol. 19 2393-2406
[9]  
Clutterbuck J(2017)Mean curvature flow of mean convex hypersurfaces Commun. Pure Appl. Math. 70 511-546
[10]  
Schnürer OC(2019)Graphical translators for mean curvature flow Cal. Var. Part. Differ. Equ. 58 117-70