Exact Potts Model Partition Functions for Strips of the Triangular Lattice

被引:0
|
作者
Shu-Chiuan Chang
Jesper Lykke Jacobsen
Jesús Salas
Robert Shrock
机构
[1] State University of New York,C. N. Yang Institute for Theoretical Physics
[2] Tokyo University of Science,Department of Applied Physics, Faculty of Science
[3] Université Paris-Sud,Laboratoire de Physique Théorique et Modèles Statistiques
[4] Universidad de Zaragoza,Departamento de Física Teórica, Facultad de Ciencias
[5] Univ. Carlos III de Madrid,Dept. de Matemáticas
来源
关键词
Potts model; triangular lattice; exact solutions; transfer matrix; Fortuin–Kasteleyn representation; Tutte polynomial;
D O I
暂无
中图分类号
学科分类号
摘要
We present exact calculations of the Potts model partition function Z(G,q,v) for arbitrary q and temperature-like variable v on n-vertex strip graphs G of the triangular lattice for a variety of transverse widths equal to L vertices and for arbitrarily great length equal to m vertices, with free longitudinal boundary conditions and free and periodic transverse boundary conditions. These partition functions have the form Z(G,q,v)=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum _{j = 1}^{N_{Z,G,\lambda } }$$ \end{document}cz,G,j(λz,G,j)m-1. We give general formulas for NZ,G,j and its specialization to v=−1 for arbitrary L. The free energy is calculated exactly for the infinite-length limit of the graphs, and the thermodynamics is discussed. It is shown how the internal energy calculated for the case of cylindrical boundary conditions is connected with critical quantities for the Potts model on the infinite triangular lattice. Considering the full generalization to arbitrary complex q and v, we determine the singular locus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathcal{B}}$$ \end{document}, arising as the accumulation set of partition function zeros as m→∞, in the q plane for fixed v and in the v plane for fixed q. Explicit results for partition functions are given in the text for L=3 (free) and L=3, 4 (cylindrical), and plots of partition function zeros and their asymptotic accumulation sets are given for L up to 5. A new estimate for the phase transition temperature of the q=3 Potts antiferromagnet on the 2D triangular lattice is given.
引用
收藏
页码:763 / 823
页数:60
相关论文
共 50 条
  • [1] Exact Potts model partition functions for strips of the triangular lattice
    Chang, SC
    Jacobsen, JL
    Salas, J
    Shrock, R
    JOURNAL OF STATISTICAL PHYSICS, 2004, 114 (3-4) : 763 - 823
  • [2] Exact Potts model partition function on strips of the triangular lattice
    Chang, SC
    Shrock, R
    PHYSICA A, 2000, 286 (1-2): : 189 - 238
  • [3] Exact potts model partition functions for strips of the honeycomb lattice
    Chang, Shu-Chiuan
    Shrock, Robert
    JOURNAL OF STATISTICAL PHYSICS, 2008, 130 (05) : 1011 - 1024
  • [4] Exact Potts model partition functions for strips of the square lattice
    Chang, SC
    Salas, J
    Shrock, R
    JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (5-6) : 1207 - 1253
  • [5] Exact Potts Model Partition Functions for Strips of the Square Lattice
    Shu-Chiuan Chang
    Jesús Salas
    Robert Shrock
    Journal of Statistical Physics, 2002, 107 : 1207 - 1253
  • [6] Exact Potts model partition functions on strips of the honeycomb lattice
    Chang, SC
    Shrock, R
    PHYSICA A, 2001, 296 (1-2): : 183 - 233
  • [7] Exact Potts Model Partition Functions for Strips of the Honeycomb Lattice
    Shu-Chiuan Chang
    Robert Shrock
    Journal of Statistical Physics, 2008, 130 : 1011 - 1024
  • [8] Exact partition functions for Potts antiferromagnets on cyclic lattice strips
    Shrock, R
    Tsai, SH
    PHYSICA A, 2000, 275 (3-4): : 429 - 449
  • [9] Exact Potts model partition functions on wider arbitrary-length strips of the square lattice
    Chang, SC
    Shrock, R
    PHYSICA A, 2001, 296 (1-2): : 234 - 288
  • [10] General structural results for Potts model partition functions on lattice strips
    Chang, Shu-Chiuan
    Shrock, Robert
    Physica A: Statistical Mechanics and its Applications, 2002, 316 (1-4) : 335 - 379