A remark on bilinear Littlewood–Paley square functions

被引:0
作者
P. K. Ratnakumar
Saurabh Shrivastava
机构
[1] Harish-Chandra Research Institute,School of Mathematics
[2] Indian Institute of Science Education and Research,Department of Mathematics
来源
Monatshefte für Mathematik | 2015年 / 176卷
关键词
Bilinear multipliers; Littlewood–Paley square functions; Sobolev spaces; 42A45; 42B15; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this note is to point out that the results proved in Bernicot and Shrivastava (Indiana Univ Math J 60(1):233–268, 2011) and Ratnakumar and Shrivastava (Proc Am Math Soc 140(12):4285–4293, 2012), for bilinear square functions associated with symbols of the form φ(x-n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x-n)$$\end{document}, extend to a far more general family of bilinear multiplier symbols ϕn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _n$$\end{document}, supported in disjoint cubes Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n$$\end{document}.
引用
收藏
页码:615 / 622
页数:7
相关论文
共 33 条
  • [1] A remark on bilinear Littlewood-Paley square functions
    Ratnakumar, P. K.
    Shrivastava, Saurabh
    MONATSHEFTE FUR MATHEMATIK, 2015, 176 (04): : 615 - 622
  • [2] ON BILINEAR LITTLEWOOD-PALEY SQUARE FUNCTIONS
    Ratnakumar, P. K.
    Shrivastava, Saurabh
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (12) : 4285 - 4293
  • [3] BILINEAR LITTLEWOOD-PALEY FOR CIRCLE AND TRANSFERENCE
    Mohanty, Parasar
    Shrivastava, Saurabh
    PUBLICACIONS MATEMATIQUES, 2011, 55 (02) : 501 - 519
  • [5] Littlewood-Paley functions and Sobolev spaces
    Chen, Jiecheng
    Fan, Dashan
    Zhao, Fayou
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 184 : 273 - 297
  • [6] Littlewood-Paley Functions and Triebel-Lizorkin Spaces, Besov Spaces
    Fan, Dashan
    Zhao, Fayou
    ANALYSIS IN THEORY AND APPLICATIONS, 2021, 37 (03): : 267 - 288
  • [7] Littlewood-Paley operators with variable kernels
    Jiecheng Chen
    Yong Ding
    Dashan Fan
    Science in China Series A, 2006, 49 : 639 - 650
  • [8] Littlewood–Paley Equivalence and Homogeneous Fourier Multipliers
    Shuichi Sato 
    Integral Equations and Operator Theory, 2017, 87 : 15 - 44
  • [9] Littlewood-Paley operators with variable kernels
    Chen Jiecheng
    Ding Yong
    Fan Dashan
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (05): : 639 - 650
  • [10] Vector valued multivariate spectral multipliers, Littlewood–Paley functions, and Sobolev spaces in the Hermite setting
    J. J. Betancor
    J. C. Fariña
    A. Sanabria
    Monatshefte für Mathematik, 2015, 176 : 165 - 195