The emergence and growth of the flux transport dynamo model of the sunspot cycle

被引:4
作者
Choudhuri, Arnab Rai [1 ]
机构
[1] Indian Inst Sci, Dept Phys, Bengaluru 560012, Karnataka, India
关键词
Sunspots; The sunspot cycle; Solar magnetic fields; Dynamo theory; ION-CYCLOTRON RANGE; TRAVELING-WAVE ANTENNA; RESONANCE HEATING-SYSTEM; HELICON CURRENT DRIVE; ARC DETECTION SYSTEM; SCRAPE-OFF LAYER; ICRF ANTENNA; HIGH-POWER; TOKAMAK PLASMA; ASDEX UPGRADE;
D O I
10.1007/s41614-023-00120-9
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The sunspot cycle is the magnetic cycle of the Sun produced by the dynamo process. A central idea of the solar dynamo is that the toroidal and the poloidal magnetic fields of the Sun sustain each other. We discuss the relevant observational data both for sunspots (which are manifestations of the toroidal field) and for the poloidal field of the Sun. We point out how the differential rotation of the Sun stretches out the poloidal field to produce the toroidal field primarily at the bottom of the convection zone, from where parts of this toroidal field may rise due to magnetic buoyancy to produce sunspots. In the flux transport dynamo model, the decay of tilted bipolar sunspot pairs gives rise to the poloidal field by the Babcock-Leighton mechanism. In this type of model, the meridional circulation of the Sun, which is poleward at the solar surface and equatorward at the bottom of the convection zone, plays a crucial role in the transport of magnetic fluxes. We finally point out that various stochastic fluctuations associated with the dynamo process may play a key role in producing the irregularities of the sunspot cycle.
引用
收藏
页数:25
相关论文
共 300 条
[2]  
[Anonymous], 1986, The role of the faraday screen in ICRF antennae: comparison of an optically open and optically closed screen in ASDEX
[3]   ICRH ITER-like antenna tested on TS commissioning, electrical modeling and load resilience studies [J].
Argouarch, A. ;
Vulliez, K. ;
Mollard, P. ;
Lombard, G. ;
Bosia, G. ;
Colas, L. ;
Mendes, A. ;
Volpe, D. ;
Millon, L. ;
Ekedahl, A. ;
Bremond, S. ;
Clairet, F. ;
Hoang, G. T. ;
Mendes, A. ;
Elkhaldi, M. ;
Beaumont, B. ;
Becoulet, A. ;
Berger-by, G. ;
Giruzzi, G. ;
Gunn, J. ;
Hertout, P. ;
Rimini, F. ;
Saint-Laurent, F. .
FUSION ENGINEERING AND DESIGN, 2009, 84 (2-6) :275-278
[4]   Integrating a distributed antenna in DEMO: Requirements and challenges [J].
Bader, A. ;
Bosia, G. ;
Messiaen, A. ;
Ragona, R. ;
Garcia, A. ;
Fischer, U. ;
Franke, T. ;
Noterdaeme, J. -M. ;
Tran, M. Q. ;
Van Eester, D. .
FUSION ENGINEERING AND DESIGN, 2017, 123 :431-434
[5]   System of ICR Heating of the Plasma at the TRT Tokamak [J].
Baev, V. M. ;
Getman, D., V ;
Gubin, A. M. ;
Subbotin, M. L. .
PLASMA PHYSICS REPORTS, 2021, 47 (11) :1169-1175
[6]   Design improvements, assembly and testing of the ICRH antenna for W7-X [J].
Bardawil, D. A. Castano ;
Schweer, B. ;
Ongena, J. ;
Behr, W. ;
Crombe, K. ;
Czymek, G. ;
Han, X. ;
Hartmann, D. ;
Hollfeld, K. P. ;
Kallmeyer, J. P. ;
Kramer-Flecken, A. ;
Linsmeier, Ch ;
Neubauer, O. ;
Nicolai, D. ;
Offermanns, G. ;
Satheeswaran, G. ;
Stepanov, I ;
Van Schoor, M. ;
Vervier, M. ;
Wolf, R. .
FUSION ENGINEERING AND DESIGN, 2021, 166
[7]  
Beaumont B, 2013, IEEE INT VAC ELECT C
[8]   Heating and current drive regimes in the ion cyclotron range of frequency [J].
Becoulet, A .
PLASMA PHYSICS AND CONTROLLED FUSION, 1996, 38 (12A) :A1-A11
[9]  
Benford J., 2007, High Power Microwaves, V3, P43, DOI [10.1201/9781420012064, DOI 10.1201/9781420012064]
[10]   HEATING OF A CONFINED PLASMA BY OSCILLATING ELECTROMAGNETIC FIELDS [J].
BERGER, JM ;
NEWCOMB, WA ;
DAWSON, JM ;
FRIEMAN, EA ;
KULSRUD, RM ;
LENARD, A .
PHYSICS OF FLUIDS, 1958, 1 (04) :301-307