Interfacial reactions of Cu-containing lead-free solders with Au/NiP metallization

被引:0
作者
M. N. Islam
Y. C. Chan
机构
[1] City University of Hong,Department of Electronic Engineering
来源
Journal of Electronic Materials | 2005年 / 34卷
关键词
Intermetallics; lead-free solder; dissolution of electroless NiP; Cu-containing solder;
D O I
暂无
中图分类号
学科分类号
摘要
Cu-containing solder alloys have been used to identify their interfacial reactions with electroless NiP. As-reflowed, AuSn4 intermetallic compounds (IMCs) are formed in the Sn-Cu and Sn-Ag-Cu solders, but in the cases of Sn-Ag-Cu-In, In-Sn-Au IMCs are formed and are uniformly distributed in the solder. Different types of IMCs such as high-Cu (>30 at.%), medium-Cu (30-15 at.%), and low-Cu (<15 at.%) containing IMCs are formed at the interface. High-Cu and medium-Cu containing ternary intermetallic compounds (TIMCs) are found in the Sn-Cu and Sn-Ag-Cu solder joints, respectively. Medium-Cu containing quaternary intermetallic compounds (QIMCs) are found in the Sn-Ag-Cu-In joints. Initially, TIMCs and QIMCs have higher growth rates, resulting in the entrapment of some Pb-rich phase in the high-Cu containing TIMCs and some In-Sn-Au phase in the QIMCs. High-Cu containing TIMCs have a lower growth rate and consume less of the NiP layer. The spalling of medium-Cu containing TIMCs in the Sn-Ag-Cu solder increases both the growth rate of TIMCs and the consumption rate of the NiP layer. Low-Cu containing QIMCs in the Sn-Ag-Cu-In solder are stable on P-rich Ni and reduce the dissolution rate of the NiP layer. Consumption of the NiP layer can be reduced by adding Cu or In, because of the changes of the interfacial IMCs phases, which are stable and adhere well to the P-rich Ni layer during reflow.
引用
收藏
页码:662 / 669
页数:7
相关论文
共 66 条
  • [1] Jang J.W.(2000)undefined J. Appl. Phys. 88 6359-6359
  • [2] Frear D.R.(2004)undefined Mater. Sci. Eng.: R 44 1-1
  • [3] Lee T.Y.(2002)undefined Mater. Sci. Eng. R: Rep. 38 55-55
  • [4] Tu K.N.(2004)undefined J. Mater. Res. 19 2897-2897
  • [5] Wu C.M.L.(2002)undefined J. Electron. Mater. 17 263-263
  • [6] Yu D.Q.(2003)undefined J. Electron. Mater. 32 123-123
  • [7] Law C.M.T.(2001)undefined Surface Mount Technol. 13 7-7
  • [8] Wang L.(1992)undefined J. Electron. Mater. 21 401-401
  • [9] Zeng K.(1992)undefined J. Electron. Mater. 21 599-599
  • [10] Tu K.N.(1997)undefined Soldering Surf. Mount Technol. 9 65-65