Quasisymmetric functions and Kazhdan-Lusztig polynomials

被引:0
|
作者
Louis J. Billera
Francesco Brenti
机构
[1] Cornell University,Department of Mathematics
[2] Universitá di Roma “Tor Vergata”,Dipartimento di Matematica
来源
Israel Journal of Mathematics | 2011年 / 184卷
关键词
Hopf Algebra; Weyl Group; Coxeter Group; Lattice Path; Bruhat Order;
D O I
暂无
中图分类号
学科分类号
摘要
We associate a quasisymmetric function to any Bruhat interval in a general Coxeter group. This association can be seen to be a morphism of Hopf algebras to the subalgebra of all peak functions, leading to an extension of the cd-index of convex polytopes. We show how the Kazhdan-Lusztig polynomial of the Bruhat interval can be expressed in terms of this complete cd-index and otherwise explicit combinatorially defined polynomials. In particular, we obtain the simplest closed formula for the Kazhdan-Lusztig polynomials that holds in complete generality.
引用
收藏
页码:317 / 348
页数:31
相关论文
共 50 条
  • [21] Boolean elements in Kazhdan-Lusztig theory
    Marietti, M
    JOURNAL OF ALGEBRA, 2006, 295 (01) : 1 - 26
  • [22] Parabolic Kazhdan-Lusztig R-polynomials for tight quotients of the symmetric groups
    Brenti, Francesco
    JOURNAL OF ALGEBRA, 2011, 347 (01) : 247 - 261
  • [23] On Kazhdan-Lusztig cells in type B
    Cédric Bonnafé
    Journal of Algebraic Combinatorics, 2010, 31 : 53 - 82
  • [24] Parabolic Kazhdan-Lusztig R-polynomials for quasi-minuscule quotients
    Brenti, Francesco
    Mongelli, Pietro
    Sentinelli, Paolo
    JOURNAL OF ALGEBRA, 2016, 452 : 574 - 595
  • [25] Formulas for multi-parameter classes of Kazhdan-Lusztig polynomials in S (n)
    Caselli, F
    Marietti, M
    DISCRETE MATHEMATICS, 2006, 306 (8-9) : 711 - 725
  • [26] AN INVERSION FORMULA FOR (J, (J)over-cap)-RELATIVE KAZHDAN-LUSZTIG POLYNOMIALS
    Yin, Yunchuan
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (08) : 2907 - 2919
  • [27] Minimal reduction type and the Kazhdan-Lusztig map
    Yun, Zhiwei
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (06): : 1240 - 1274
  • [28] On the minimal power of q in a Kazhdan-Lusztig polynomial
    Gaetz, Christian
    Gao, Yibo
    ADVANCES IN MATHEMATICS, 2024, 457
  • [29] ON THE KAZHDAN-LUSZTIG CELLS IN TYPE E8
    Geck, Meinolf
    Halls, Abbie
    MATHEMATICS OF COMPUTATION, 2015, 84 (296) : 3029 - 3049
  • [30] Embedded factor patterns for deodhar elements in Kazhdan-Lusztig theory
    Billey, Sara C.
    Jones, Brant C.
    ANNALS OF COMBINATORICS, 2007, 11 (3-4) : 285 - 333