Modular d0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{0}$$\end{document}-algebras

被引:0
作者
Anna Avallone
Giuseppina Barbieri
Paolo Vitolo
Hans Weber
机构
[1] Università della Basilicata,Dipartimento di Matematica, Informatica ed Economia
[2] Università di Salerno,Dipartimento di Matematica
[3] Università della Basilicata,Dipartimento di Matematica, Informatica ed Economia
[4] Università di Udine,Dipartimento di Scienze Matematiche, Informatiche e Fisiche
关键词
-Algebras; BCK-algebras; 03G25; 06A12; 06F35;
D O I
10.1007/s40574-020-00237-6
中图分类号
学科分类号
摘要
We introduce a concept of modularity for a d0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{0}$$\end{document}-algebraA in such a way that, in case of A being a lattice, it coincides with the usual one. We also show that if μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is a d0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{0}$$\end{document}-measure on a d0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{0}$$\end{document}-algebraA, the quotient of A modulo the ideal of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-negligible elements is always modular.
引用
收藏
页码:529 / 538
页数:9
相关论文
共 50 条