Study of a periodically forced magnetohydrodynamic system using Floquet analysis and nonlinear Galerkin modelling

被引:0
作者
Arnab Basak
机构
[1] Indian Institute of Science Education and Research Kolkata,Center of Excellence in Space Sciences India
来源
Nonlinear Dynamics | 2018年 / 94卷
关键词
Driven magnetoconvection; Modelling; Bifurcations;
D O I
暂无
中图分类号
学科分类号
摘要
We present a detailed study of Rayleigh–Bénard magnetoconvection with periodic gravity modulation and uniform vertical magnetic field. Linear stability analysis is carried out using Floquet theory to construct the stability boundaries in order to estimate the magnitude of forcing amplitude ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} required for having convection in the system for a fixed Rayleigh number Ra, wave number k and modulating frequency Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. The effects of varying Prandtl number Pr and Chandrasekhar number Q on the threshold of convection are also investigated. A higher Pr value reduces the value of the threshold, whereas a higher Q value increases it. Bicritical states are also observed at which the minimum forcing amplitude needed for convection to begin occurs at two different k values in harmonic and sub-harmonic regions, respectively. We also construct a nonlinear Galerkin model and compare the results with those obtained from linear stability analysis. Two-dimensional (2D) oscillatory convection is observed at the onset, while quasiperiodic and chaotic behaviours are found at higher Ra values. 2D as well as nonlinear convective flow patterns are observed for primary and higher-order instabilities, respectively. Bifurcation diagrams with respect to different parameters such as ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}, Ra and Q are provided for thorough understanding of the forced nonlinear system.
引用
收藏
页码:2763 / 2784
页数:21
相关论文
共 210 条
[71]  
La Haye RJ(2009)Determination of Floquet exponents for small-signal analysis of nonlinear periodic circuits IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28 447-undefined
[72]  
Navratil GA(2012)Floquet analysis of the modulated two-mode Bose–Hubbard model Phys. Rev. A 85 053624-undefined
[73]  
Okabayashi M(1994)Floquet analysis of quantum resonance in a driven nonlinear system Phys. Rev. E 50 902-undefined
[74]  
Scoville JT(2006)Directed transport and Floquet analysis for a periodically kicked wave packet at a quantum resonance Phys. Rev. E 74 016212-undefined
[75]  
Strait EJ(2002)Faraday patterns in Bose–Einstein condensates Phys. Rev. Lett. 89 210406-undefined
[76]  
Hadad K(2011)Floquet analysis for vibronically modulated electron tunneling J. Phys. Chem. B 115 5510-undefined
[77]  
Rahimian A(2002)Floquet analysis of atom-optics tunneling experiments Phys. Rev. A 66 053615-undefined
[78]  
Nematollahi MR(1989)Floquet analysis of the far-infrared dissociation of a Morse oscillator Phys. Rev. A 40 4054-undefined
[79]  
Pal P(1997)Complete dissociation by chirped laser pulses designed by adiabatic Floquet analysis Phys. Rev. A 56 1458-undefined
[80]  
Kumar K(1995)Floquet analysis of inelastic collisions of ions with Rydberg atoms Phys. Rev. A 52 2865-undefined