Active magneto-plasmonics in hybrid metal-ferromagnet structures

被引:425
作者
Temnov, Vasily V. [1 ]
Armelles, Gaspar [2 ]
Woggon, Ulrike [3 ]
Guzatov, Dmitry [4 ]
Cebollada, Alfonso [2 ]
Garcia-Martin, Antonio [2 ]
Garcia-Martin, Jose-Miguel [2 ]
Thomay, Tim [5 ,6 ]
Leitenstorfer, Alfred [5 ,6 ]
Bratschitsch, Rudolf [5 ,6 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] CSIC, CNM, IMM, Madrid 28760, Spain
[3] TU Berlin, Inst Opt & Atomare Phys, D-10632 Berlin, Germany
[4] Yanka Kupala Grodno State Univ, Grodno 230023, BELARUS
[5] Univ Konstanz, Dept Phys, D-78457 Constance, Germany
[6] Univ Konstanz, Ctr Appl Photon, D-78457 Constance, Germany
关键词
MODULATION; COMPOSITE;
D O I
10.1038/NPHOTON.2009.265
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Surface-plasmon-mediated confinement of optical fields holds great promise for on-chip miniaturization of all-optical circuits(1-4). Following successful demonstrations of passive nanoplasmonic devices(5-7), active plasmonic systems have been designed to control plasmon propagation. This goal has been achieved either by coupling plasmons to optically active materials(8-13) or by making use of transient optical nonlinearities in metals via strong excitation with ultrashort laser pulses(14-17). Here, we present a new concept in which the active optical component is a metal-ferromagnet-metal structure. It is based on active magneto-plasmonic microinterferometry, where the surface plasmon wave vector in a gold-ferromagnet-gold trilayer system is controlled using a weak external magnetic field. Application of this new technique allows measurement of the electromagnetic field distribution inside a metal at optical frequencies and with nanometre depth resolution. Significant modulation depth combined with possible all-optical magnetization reversal induced by femtosecond light pulses(18) opens a route to ultrafast magneto-plasmonic switching.
引用
收藏
页码:107 / 111
页数:5
相关论文
共 30 条
[1]   Generation of single optical plasmons in metallic nanowires coupled to quantum dots [J].
Akimov, A. V. ;
Mukherjee, A. ;
Yu, C. L. ;
Chang, D. E. ;
Zibrov, A. S. ;
Hemmer, P. R. ;
Park, H. ;
Lukin, M. D. .
NATURE, 2007, 450 (7168) :402-406
[2]   Plasmon-assisted transmission of entangled photons [J].
Altewischer, E ;
van Exter, MP ;
Woerdman, JP .
NATURE, 2002, 418 (6895) :304-306
[3]   The promise of plasmonics [J].
Atwater, Harry A. .
SCIENTIFIC AMERICAN, 2007, 296 (04) :56-63
[4]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[5]   Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems [J].
Belotelov, V. I. ;
Doskolovich, L. L. ;
Zvezdin, A. K. .
PHYSICAL REVIEW LETTERS, 2007, 98 (07)
[6]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[7]   Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers [J].
Dicken, Matthew J. ;
Sweatlock, Luke A. ;
Pacifici, Domenico ;
Lezec, Henri J. ;
Bhattacharya, Kaushik ;
Atwater, Harry A. .
NANO LETTERS, 2008, 8 (11) :4048-4052
[8]   Exciton-plasmon-photon conversion in plasmonic nanostructures [J].
Fedutik, Y. ;
Temnov, V. V. ;
Schoeps, O. ;
Woggon, U. ;
Artemyev, M. V. .
PHYSICAL REVIEW LETTERS, 2007, 99 (13)
[9]   The optical response of nanostructured surfaces and the composite diffracted evanescent wave model [J].
Gay, G ;
Alloschery, O ;
De Lesegno, BV ;
O'Dwyer, C ;
Weiner, J ;
Lezec, HJ .
NATURE PHYSICS, 2006, 2 (04) :262-267
[10]   Light in tiny holes [J].
Genet, C. ;
Ebbesen, T. W. .
NATURE, 2007, 445 (7123) :39-46